Vol. 46
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-03-01
Surface-Plasmon-Polaritons at the Interface of Nanostructured Metamaterials
By
Progress In Electromagnetics Research M, Vol. 46, 165-172, 2016
Abstract
The rigorous modeling and analysis of surface waves at the boundary of two metamaterials are presented. The nature of the phenomenon of the surface-plasmon-polaritons and the influence of various parameters on it are investigated. We have analyzed the properties of structures incorporating nanostructured metamaterials. Surface-plasmon-polaritons at the interface of such metamaterials are studied. We demonstrate the ways to control the properties of the surface waves. Each metamaterial comprises alternating metal and dielectric layers. We analyze the dependence of the dispersion characteristics on the materials employed in metal-dielectric compound. The consistency of the dispersion diagrams and effective permittivity is studied. The Drude model is introduced in the metal dispersion in order to take into account the effects of the structure on dielectric properties.
Citation
Tatjana Gric, "Surface-Plasmon-Polaritons at the Interface of Nanostructured Metamaterials," Progress In Electromagnetics Research M, Vol. 46, 165-172, 2016.
doi:10.2528/PIERM15121605
References

1. Yan, H., X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, "Tunable infrared plasmonic devices using graphene/insulator stacks," Nat. Nanotechnol., Vol. 7, 330, 2012.
doi:10.1038/nnano.2012.59

2. Viti, L., D. Coquillat, A. Politano, K. A. Kokh, Z. S. Aliev, M. B. Babanly, O. E. Tereshchenko, W. Knap, E. V. Chulkov, and M. S. Vitiello, "Plasma-wave terahertz detection mediated by topological insulators surface states," Nano Lett., Vol. 16, 80, 2016.
doi:10.1021/acs.nanolett.5b02901

3. Politano, A. and G. Chiarello, "Unravelling suitable graphene-metal contacts for graphene-based plasmonic devices," Nanoscale, Vol. 5, 8215, 2013.
doi:10.1039/c3nr02027d

4. Radkovskaya, A., E. Tatartschuk, O. Sydoruk, E. Shamonina, C. J. Stevens, D. J. Edwards, and L. Solymar, "Surface waves at an interface of two metamaterial structures with interelement coupling," Phys. Rev. B, Vol. 82, 045430, 2010.
doi:10.1103/PhysRevB.82.045430

5. Echtermeyer, T. J., S. Milana, U. Sassi, A. Eiden, M. Wu, E. Lidorikis, and A. C. Ferrari, "Surface plasmon polariton graphene photodetectors," Nano Lett., Vol. 16, 8, 2015.
doi:10.1021/acs.nanolett.5b02051

6. Politano, A. and G. Chiarello, "The influence of electron confinement, quantum size effects, and film morphology on the dispersion and the damping of plasmonic modes in Ag and Au thin films," Prog. Surf. Sci., Vol. 90, 144, 2015.
doi:10.1016/j.progsurf.2014.12.002

7. Nechaev, I. A., I. Aguilera, V. De Renzi, A. di Bona, A. Lodi Rizzini, A. M. Mio, G. Nicotra, A. Politano, S. Scalese, Z. S. Aliev, M. B. Babanly, C. Friedrich, S. Blügel, and E. V. Chulkov, "Quasiparticle spectrum and plasmonic excitations in the topological insulator Sb2Te3," Phys. Rev. B, Vol. 91, 245123, 2015.
doi:10.1103/PhysRevB.91.245123

8. Politano, A., "Interplay of structural and temperature effects on plasmonic excitations at noble-metal interfaces," Philos. Mag., Vol. 92, 768, 2012.
doi:10.1080/14786435.2011.634846

9. Pendry, J. B., L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science, Vol. 305, 847, 2004.
doi:10.1126/science.1098999

10. Poddubny, A., I. Iorsh, P. Belov, and Y. Kivshar, "Hyperbolic metamaterials," Nat. Photon., Vol. 7, 948, 2013.
doi:10.1038/nphoton.2013.243

11. Jacob, Z., L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: far-field imaging beyond the diffraction limit," Opt. Express, Vol. 14, 8247, 2006.
doi:10.1364/OE.14.008247

12. Fang, A., T. Koschny, and C. M. Soukoulis, "Optical anisotropic metamaterials: negative refraction and focusing," Phys. Rev. B, Vol. 79, 245127, 2009.
doi:10.1103/PhysRevB.79.245127

13. García-Chocano, V. M., J. Christensen, and J. Sa’nchez-Dehesa, "Negative refraction and energy funneling by hyperbolic materials: An experimental demonstration in acoustics," Phys. Rev. Lett., Vol. 112, 144301, 2014.
doi:10.1103/PhysRevLett.112.144301

14. Liu, Z. W., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science, Vol. 315, 1686, 2007.
doi:10.1126/science.1137368

15. Lu, D., J. J. Kan, E. E. Fullerton, and Z. W. Liu, "Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials," Nat. Nanotech., Vol. 9, 48, 2014.
doi:10.1038/nnano.2013.276

16. Ramakrishna, S. A. and J. B. Pendry, "Optical gain removes absorption and improves resolution in a near-field lens," Phys. Rev. B, Vol. 67, 201101, 2003.
doi:10.1103/PhysRevB.67.201101

17. Belov, P. A. and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B, Vol. 73, 113110, 2006.
doi:10.1103/PhysRevB.73.113110

18. Li, X., S. He, and Y. Jin, "Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies," Phys. Rev. B, Vol. 75, 045103, 2007.

19. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Optical hyperlens magnifying sub-diffraction-limited objects," Science, Vol. 315, 1686, 2007.
doi:10.1126/science.1137368

20. Xiong, Y., Z. Liu, and X. Zhang, "Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers," Appl. Phys. Lett., Vol. 93, 111116, 2008.
doi:10.1063/1.2985898

21. Engheta, N., "Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials," Science, Vol. 317, 1698, 2007.
doi:10.1126/science.1133268

22. Hoffman, A. J., L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, "Negative refraction in semiconductor metamaterials," Nature Mater., Vol. 6, 946, 2007.
doi:10.1038/nmat2033

23. Smith, D. R. and D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Phys. Rev. Lett., Vol. 90, 077405, 2003.
doi:10.1103/PhysRevLett.90.077405

24. Scalora, M., G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. De Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M. G. Cappeddu, M. Fowler, and J. W. Haus, "Negative refraction and subwavelength focusing in the visible range using transparent metallo-dielectric stacks," Opt. Express, Vol. 15, 508, 2007.
doi:10.1364/OE.15.000508

25. Liu, Y., G. Bartal, and X. Zhang, "All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region," Opt. Express, Vol. 16, 15439, 2008.
doi:10.1364/OE.16.015439

26. Song, Z. and W. Jian, "Splitting the surface wave in metal/dielectric nanostructures," Chinese Phys. B, Vol. 20, 067901, 2011.
doi:10.1088/1674-1056/20/6/067901

27. Yeshchenko, O., I. Bondarchuk, S. Malynych, Y. Galabura, G. Chumanov, and I. Luzinov, "Surface plasmon modes of sandwich-like metal-dielectric nanostructures," Plasmonics, Vol. 10, 655, 2015.
doi:10.1007/s11468-014-9851-8

28. Dong, Z., M. Bosman, D. Zhu, X. M. Goh, and J. K. Yang, "Fabrication of suspended metal-dielectric-metal plasmonic nanostructures," Nanotechnology, Vol. 25, 135303, 2014.
doi:10.1088/0957-4484/25/13/135303

29. Agranovich, V. M. and V. E. Kravtsov, "Notes on crystal optics of superlattices," Solid State Commun., Vol. 55, 85, 1985.
doi:10.1016/0038-1098(85)91111-1

30. Iorsh, I., A. Orlov, P. Belov, and Y. Kivshar, "Interface modes in nanostructured metal-dielectric metamaterials," Appl. Phys. Lett., Vol. 99, 151914, 2011.
doi:10.1063/1.3643152

31. Raether, H., Surface Polaritons, in V. M. Agranovich, D. L. Mills, (Eds.), Surface Plasmons, Springer, New York, 1988.

32. Alu, A., N. Engheta, and R. W. Ziolkowski, "FDTD analysis of the tunneling and growing exponential in a pair of epsilon-negative and mu-negative slabs," Phys. Rev. E, Vol. 74, 016604, 2006.
doi:10.1103/PhysRevE.74.016604

33. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370, 1972.
doi:10.1103/PhysRevB.6.4370

34. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying subdiffraction-limited objects," Science, Vol. 315, 1686, 2007.
doi:10.1126/science.1137368

35. Kim, J., V. P. Drachev, Z. Jacob, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, "Improving the radiative decay rate for dye molecules with hyperbolic metamaterials," Opt. Express, Vol. 20, 8100-8116, 2012.
doi:10.1364/OE.20.008100

36. Tumkur, T., G. Zhu, P. Black, Yu. A. Barnakov, C. E. Bonner, and M. A. Noginov, "Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial," Appl. Phys. Lett., Vol. 99, 151115, 2011.
doi:10.1063/1.3631723

37. Tumkur, T. U., L. Gu, J. K. Kitur, E. E. Narimanov, and M. A. Noginov, "Control of absorption with hyperbolic metamaterials," Appl. Phys. Lett., Vol. 100, 161103, 2012.
doi:10.1063/1.4703931

38. Rho, J., Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, "Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies," Nature Commun., Vol. 1, 143, 2010.
doi:10.1038/ncomms1148