Vol. 44
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-10-21
Space-Frequency Approach to Design of Displacement Tolerant Transcutaneous Energy Transfer System
By
Progress In Electromagnetics Research M, Vol. 44, 91-100, 2015
Abstract
One of the main concerns for transcutaneous energy transfer via inductive coupling is misalignments of coils, especially in the case of mechanical circulatory support systems, when coils placed on a chest wall or an abdomen. We proposed a space-frequency approach to this problem. It is possible to find values of so called splitting frequency by expression which incorporate the value of coupling coefficient. Given that coupling coefficient depends on the system geometry, it allows one to determine the optimal operating frequency for the specified relative position of the coils. Numerical calculations of transcutaneous energy transfer parameters show the capability of the proposed method. It was found that the operation at splitting frequency provided more stable output with respect to changes in a system geometry. The output power of the proposed system changes for not more than 5% for a distance in a range of 5...25 mm. At the same time, the output power of the system which operates at fixed resonant frequency changes for about 40%. Similar results were obtained for a lateral displacements in a range of 0...20 mm.
Citation
Arseny Anatolievich Danilov, Eduard Adipovich Mindubaev, and Sergey Vasilyevich Selishchev, "Space-Frequency Approach to Design of Displacement Tolerant Transcutaneous Energy Transfer System," Progress In Electromagnetics Research M, Vol. 44, 91-100, 2015.
doi:10.2528/PIERM15082006
References

1. Puers, R. and G. Vandervoorde, "Recent progress on transcutaneous energy transfer for total artificial heart system," Int. J. Artif. Organs, Vol. 25, No. 5, 400-405, 2001.
doi:10.1046/j.1525-1594.2001.025005400.x

2. Yakovlev, A., S. Kim, and A. Poon, "Implantable biomedical devices: Wireless powering and communication," IEEE Commun. Mag., 152-159, April 2012.

3. Danilov, A. A., G. P. Itkin, and S. V. Selishchev, "Progress in methods for transcutaneous wireless energy supply to implanted ventricular assist devices," J. Biomed. Eng., Vol. 44, No. 4, 125-129, 2010.
doi:10.1007/s10527-010-9169-6

4. Schuder, J. C., "Powering an artificial heart: Birth of the inductively coupled-radio frequency system in 1960," Int. J. Artif. Organs, Vol. 26, No. 11, 909-915, 2002.
doi:10.1046/j.1525-1594.2002.07130.x

5. Wang, J. X., J. R. Smith, and P. Bonde, "Energy transmission and power sources for mechanical circulatory support devices to achieve total implantability," Annals of Thoracic Surgery, Vol. 97, 1467-1474, 2014.
doi:10.1016/j.athoracsur.2013.10.107

6. Flack, F. C., E. D. James, and D. M. Schlapp, "Mutual inductance of air-cored coils: Effect on design of radio-frequency coupled implants," Med. & Biol. Engng., Vol. 9, 79-85, 1971.
doi:10.1007/BF02474736

7. Soma, M., D. C. Galbraith, and R. L. White, "Radio-frequency coils in implantable devices: Misalignment analysis and design procedure," IEEE T. Bio. Med. Eng., Vol. 4, No. 4, 276-282, 1987.
doi:10.1109/TBME.1987.326088

8. Babic, S., F. Sirois, C. Akyel, and C. Girardi, "Mutual inductance calculation between circular filaments arbitrarily positioned in space: Alternative to Grover’s formula," IEEE Trans. Magn., Vol. 46, No. 9, 3591-3600, Santander, Spain, June 2010.
doi:10.1109/TMAG.2010.2047651

9. Pelletier, B., S. Spiliopoulos, T. Finocchiaro, F. Graef, K. Kuipers, M. Laumen, D. Guersoy, U. Steinseifer, R. Koerfer, and G. Tenderich, "System overview of the fully implantable destination therapy --- ReinHeart-total artificial heart," Eur. J. Cardiothorac. Surg., Vol. 47, No. 1, 80-86, 2015.
doi:10.1093/ejcts/ezu321

10. Si, P., A. P. Hu, S. Malpas, and D. A. Budgett, "Frequency control method for regulating wireless power to implantable devices," IEEE T. Bio. Med. Eng., Vol. 2, No. 1, 22-29, 2008.

11. Van Schuylenbergh, K. and R. Puers, Inductive Powering, Springer Netherlands, 2009.
doi:10.1007/978-90-481-2412-1

12. Niu, W. Q., J. X. Chu, W. Gu, and A. D. Shen, "Coupled-mode analysis of frequency splitting phenomena in CPT systems," Electron. Lett., Vol. 48, No. 12, 723-724, 2012.
doi:10.1049/el.2012.0953

13. Friedmann, J., F. Groedl, and R. Kennel, "A novel universal control scheme for transcutaneous energy transfer (TET) applications," IEEE J. Emerg. Sel. Top Power Electron., Vol. 3, No. 1, 296-305, 2015.
doi:10.1109/JESTPE.2014.2345128

14. Terman, F. E., Radio Engineers’ Handbook, McGraw-Hill, New York, 1943.

15. Niu, W. Q., J. X. Chu, W. Gu, and A. D. Shen, "Exact analysis of frequency splitting phenomena of contactless power transfer systems," IEEE Trans. Circuits Syst. I Regul. Pap., Vol. 60, No. 6, 1670-1677, 2013.
doi:10.1109/TCSI.2012.2221172

16. Knecht, O., R. Bosshard, J. W. Kolar, and C. T. Starck, "Optimization of transcutaneous energy transfer coils for high power medical applications," 2014 IEEE 15th Workshop on Control and Modeling for Power Electronics (COMPEL), 1-10, 2014.
doi:10.1109/COMPEL.2014.6877190