Vol. 43
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-08-12
All-Optical Logic Gates Based on Spatial-Soliton Interactions in Optical Communication Spectral Region
By
Progress In Electromagnetics Research M, Vol. 43, 71-79, 2015
Abstract
New designs of all-optical logic gates based on spatial-soliton interactions in optical communication spectral regions were proposed. The proposed structures are composed of local nonlinear Mach-Zehnder interferometer (MZI) waveguide structures with multi-input ports and two nonlinear output ports. They can be used to design various all-optical logic gates. The nonlinear MZI waveguide structure with local nonlinear waveguides functions like a phase shifter. It employs angular deflection of spatial solitons controlled by the phase modulation created in the local nonlinear MZI. The light-induced index changes in the local nonlinear MZI waveguide structures break the symmetry of structure and make the output signal beam propagate through different nonlinear output waveguides. By properly choosing the input control power, the spatial solitons will be switched to different output ports. The numerical results show that the proposed local nonlinear MZI waveguide structures could really function as all-optical logic gates in the optical communication spectral region.
Citation
Yaw-Dong Wu, "All-Optical Logic Gates Based on Spatial-Soliton Interactions in Optical Communication Spectral Region," Progress In Electromagnetics Research M, Vol. 43, 71-79, 2015.
doi:10.2528/PIERM15060501
References

1. Yariv, A., Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: A proposal and analysis," Opt. Lett., Vol. 24, 711-713, 1999.
doi:10.1364/OL.24.000711

2. Shi, T. T. and S. Chi, "Nonlinear photonic switching by using the spatial soliton collision," Opt. Lett., Vol. 15, 1123-1125, 1990.
doi:10.1364/OL.15.001123

3. Wu, Y. D., "New all-optical wavelength auto-router based on spatial solitons," Optics Express, Vol. 12, 4172-4177, 2004.
doi:10.1364/OPEX.12.004172

4. Villeneuve, A., K. A. Hemyari, J. U. Kang, C. N. Ironside, J. S. Aitchison, and G. I. Stegeman, "Demonstration of all-optical demultiplexing at 1555 nm with an AlGaAs directional coupler," Electronics Lett., Vol. 29, 721-722, 1993.
doi:10.1049/el:19930482

5. Wu, Y. D., "Coupled-soliton all-optical logic device with two parallel tapered waveguides," Fiber and Integrated Optics, Vol. 23, 405-414, 2004.
doi:10.1080/01468030490489725

6. Ironside, N. and M. O’Neill, "Guided wave all-optical logic devices," IEE Colloquium on Non-Linear Optical Waveguides, 15/1-15/4, 1988.

7. Jensen, S. M., "The nonlinear coherent coupler," IEEE Journal of Quantum Electronics, Vol. 18, 1580-1583, 1982.
doi:10.1109/JQE.1982.1071438

8. Thylen, L., "Beam-propagation method analysis of a nonlinear directional coupler," Opt. Lett., Vol. 11, 739-741, 1986.
doi:10.1364/OL.11.000739

9. Pertsch, T., U. Peschel, and F. Lederer, "All-optical switching in quadratically nonlinear waveguide arrays," Opt. Lett., Vol. 28, 102-104, 2003.
doi:10.1364/OL.28.000102

10. Jensen, S. M., "The nonlinear coherent coupler," IEEE J. Quantum Electron., Vol. 18, 1580-1583, 1982.
doi:10.1109/JQE.1982.1071438

11. Lattes, A., H. Haus, F. J. Leonberger, and E. P. Ippen, "An ultrafast all-optical gate," IEEE J. Quantum Electron., Vol. 19, 1718-1723, 1983.
doi:10.1109/JQE.1983.1071766

12. Kawaguchi, H., "Proposal for a new all-optical waveguide functional device," Opt. Lett., 411-413, 1985.
doi:10.1364/OL.10.000411

13. Shi, T. T. and S. Chi, "Nonlinear TE-wave propagation in a symmetric, converging, single-mode Y-junction waveguide," J. Opt. Soc. Amer. B, Vol. 9, 1338-1340, 1992.
doi:10.1364/JOSAB.9.001338

14. Wa, P. L. K., J. E. Sitch, N. J. Mason, J. S. Roberts, and P. N. Robson, "All-optical multiple-quantum-well wave-guide switch," Electronics Lett., Vol. 21, 26-28, 1985.
doi:10.1049/el:19850021

15. Finlayson, N., W. C. Banyai, E. M. Wright, C. T. Seaton, G. I. Stegeman, T. J. Cullen, and C. N. Ironside, "Picosecond switching induced by saturable absorption in a nonlinear directional coupler," Appl. Phys. Lett., Vol. 53, 1144-1146, 1988.
doi:10.1063/1.100039

16. Villeneuve, A., C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchinson, and C. N. Ironside, "Uitrafast all-optical switching in semiconductor nonlinear directional coupler at half band gap," Appl. Phys. Lett., Vol. 61, 147-149, 1992.
doi:10.1063/1.108200

17. Al-hemyai, K., J. S. Aitchison, C. N. Ironside, G. T. Kennedy, R. S. Grant, and W. Sibbett, "Ultrafast all-optical switching in GaAlAs integrated interferometer in 1.55 μm spectral region," Electronics Lett., Vol. 28, 1090-1092, 1992.
doi:10.1049/el:19920689

18. Nakamura, S., K. Tajima, and Y. Sugimoto, "Experimental investigation on high-speed switching characteristics of a novel symmetric Mach-Zehnder all-optical switch," Appl. Phys. Lett., Vol. 65, 283-285, 1994.
doi:10.1063/1.112347

19. Silberberg, Y. and B. G. Sfez, "All-optical phase- and power-controlled switching in nonlinear waveguide junctions," Opt. Lett., Vol. 13, 1132-1134, 1988.
doi:10.1364/OL.13.001132

20. Fouckhardt, H. and Y. Silberberg, "All-optical switching in waveguide X junctions," J. Opt. Soc. Amer. B, Vol. 7, 803-809, 1990.
doi:10.1364/JOSAB.7.000803

21. Sabini, J. P., N. Finlayson, and G. I. Stegeman, "All-optical switching in nonlinear X-junctions," Appl. Phys. Lett., Vol. 55, 1176-1178, 1989.
doi:10.1063/1.101689

22. Aitchison, J. S., A. Villeneuve, and G. I. Stegeman, "All-optical switching in a nonlinear GaAlAs X junction," Opt. Lett., Vol. 18, 1153-1155, 1993.
doi:10.1364/OL.18.001153

23. Murata, H., M. Izutsu, and T. Sueta, "All-optical switching in new nonlinear X-junctions," Proc. Nonlinear Optics, Vol. 90, 63-64, 1990.

24. Yokota, H., K. Kimura, and S. Kurazono, "Numerical analysis of an optical X coupler with a nonlinear dieletric region," IEICE Trans. Electron., Vol. E78-C, 61-66, 1995.

25. Pramoono, Y. H., M. Geshiro, T. Kitamura, and S. Sawa, "Self-switching in crossing waveguides with three channels consisting of nonlinear material," IEICE Trans. Electron., Vol. E82-C, 111-118, 1999.

26. Wu, Y. D., M. H. Chen, and C. H. Chu, "All-optical logic device using bent nonlinear tapered Y-junction waveguide structure," Fiber Integrated Opt., Vol. 20, 517-524, 2001.
doi:10.1080/014680301750413476

27. Pramono, Y. H., M. Geshiro, T. Kitamura, and S. Sawa, "Optical logic OR-AND-NOT and NOR gates in waveguides consisting of nonlinear material," IEICE Trans. Electron., Vol. E83-C, 1755-1761, 2000.

28. Pramono, Y. H., "Nonlinear waveguides for optical logic and computation," J. Nonlinear Opt. Phys. Mater., Vol. 10, 209-222, 2001.
doi:10.1142/S0218863501000553

29. Wu, Y. D., "Nonlinear all-optical switching device by using the spatial soliton collision," Fiber Integr. Opt, Vol. 23, 387, 2004.
doi:10.1080/01468030490489707

31. Wu, Y. D., "New all-optical switch based on the spatial soliton repulsion," Optics Express, Vol. 14, 4005, 2006.
doi:10.1364/OE.14.004005

32. Wu, Y. D., M. L. Whang, M. H. Chen, and R. Z. Tasy, "All-optical switch based on the local nonlinear Mach-Zehnder interferometer," Optics Express, Vol. 15, 9883, 2007.
doi:10.1364/OE.15.009883

33. Radwell, N., C. McIntyre, A. J. Scroggie, G. L. Oppo, W. J. Firth, and T. Ackemann, "Switching spatial dissipative solitons in a VCSEL with frequency selective feedback," Eur. Phys. J. D, Vol. 59, 121, 2010.
doi:10.1140/epjd/e2010-00124-6

34. Sarma, K., "Vector soliton switching in a fiber nonlinear directional coupler," Opt. Comm., Vol. 284, 186, 2011.
doi:10.1016/j.optcom.2010.09.001

35. Hatami, M., R. Attarzadeh, and A. Gharaati, "Design of an ultra-fast all-optical dark soliton switch in a three-core nonlinear directional coupler (TNLDC) made of chalcogenide glasses," J. Nonlinear Optic. Phys. Mat., Vol. 21, 1250038, 2012.
doi:10.1142/S0218863512500385

36. Karimi, S., M. E. Heidari, and F. Forootan, "Design and modellingof a 1 × N all-optical nonline Mach-Zehnder switch controlled by wavelength and input power," Progress In Electromagnetics Research M, Vol. 28, 101-113, 2013.
doi:10.2528/PIERM12100504

37. Liu, W.-J. and M. Lei, "All-optical soliton switching for the asymmetric fiber couplers," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 18, 2288-2297, 2013.
doi:10.1080/09205071.2013.839961

38. Zhong, H., B. Tian, Y. Jiang, M. Li, P. Wang, and W.-J. Liu, "All-optical soliton switching for the asymmetric fiber couplers," Eur. Phys. J. D, Vol. 67, 1, 2013.

39. Wu, Y. D., "All-optical logic gates by using multibranch waveguide structure with localized optical nonlinearity," IEEE J. Sel. Top. Quantum. Electron., Vol. 11, 307, 2005.

40. Serak, S. V., N. V. Tabiryan, M. Peccianti, and G. Assanto, "Spatial soliton all-optical logic gates," IEEE Photon. Techn. Lett., Vol. 18, 1287, 2006.
doi:10.1109/LPT.2006.875318

41. Wu, Y. D., T. T. Shih, and M. H. Chen, "New all-optical logic gates based on the local nonlinear Mach-Zehnder interferometer," Optics Express, Vol. 16, 248, 2008.
doi:10.1364/OE.16.000248

42. Corbelli, M. M., F. Garzia, and R. Cusani, "All-optical EXOR for cryptographic application based on spatial solitons," J. of Info. Security, Vol. 4, 180, 2013.
doi:10.4236/jis.2013.43020

43. Kubota, Y. and T. Odagaki, "Logic gates based on soliton transmission in the Toda lattice," Adv. in Appl. Phys., Vol. 1, 29, 2013.

44. Bhrawy, A. H., A. A. Alshaery, E. M. Hilal, W. Manrakhan, M. Savescu, and A. Biswas, "Dispersive optical solitons with Schr¨odinger-Hirota equation," J. of Nonlinear Opt. Phys. and Mater., Vol. 23, 1450014, 2014.
doi:10.1142/S0218863514500143

45. Bhrawy, A. H., A. A. Alshaery, E. M. Hilal, K. R. Khan, M. F. Mahmood, and A. Biswas, "Optical soliton in nonlinear directional couplers with spatio-temporal dispersion," J. of Modern Opt., Vol. 61, 442-459, 2014.

46. Savescu, M., S. Johnson, A. H. Kara, S. H. Crutcher, R. Kohl, and A. Biswas, "Convention laws for optical solitons with spatio-tenporal dispersion," Journal of Electromagnetic Waves and Applications, Vol. 28, 242-252, 2014.
doi:10.1080/09205071.2013.863716

47. Alshaery, A. A., A. H. Bhrawy, A. E. M. Hilal, and A. Biswas, "Bright and singular solitons in quadratic nonlinear media," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 3, 275-280, 2014.
doi:10.1080/09205071.2013.861752

48. Savescu, M., K. R. Khan, R. W. Kohl, L. Moraru, A. Yildirim, and A. Biswas, "Optical soliton perturbation with improved nonlinear Schrödinger’s equation in nanofibers," J. of Nanoelectron. and Optoelectron., Vol. 8, 208-220, 2013.
doi:10.1166/jno.2013.1459

49. Kohl, R., A. Biswas, D. Milovic, and E. Zerrad, "Optical soliton perturbation in a non-Kerr law media," Opt. and Laser Tech., Vol. 40, 647-662, 2008.
doi:10.1016/j.optlastec.2007.10.002

50. Biswas, A., M. Fessak, S. Johnson, S. Beatrice, D. Milovic, Z. Jovanoski, R. Kohl, and F. Majid, "Optical soliton perturbation in non-Kerr law media: Tarveling wave solution," Opt. and Laser Tech., Vol. 44, 1775-1780, 2012.

51. Biswas, A., A. J. M. Jawad, W. N. Manrakhan, A. K. Sarma, and K. R. Khan, "Optical solitons and complexitions of the Schr¨odinger-Hirota equation," Opt. and Laser Tech., Vol. 44, 2265-2269, 2012.
doi:10.1016/j.optlastec.2012.02.028

52. Biswas, A., D. Milovic, M. Savescu, M. F. Mahmood, K. R. Khan, and R. Kohl, "Optical soliton perturbation in nanofibers with improved nonlinear Schrödinger’s equatin by semi-inverse variational principle," J. of Nonlinear Opt. Phys. and Mater., Vol. 12, 1250054, 2012.
doi:10.1142/S0218863512500543

53. Xu, Y., Z. Jovanoski, A. Bouasla, H. Triki, L. Moraru, and A. Biswas, "Optical solitons in multi-dimensions with spatio-temporal dispersion and non-Kerr law nonlinearity," J. of Nonlinear Opt. Phys. and Mater., Vol. 22, 1350035, 2013.
doi:10.1142/S0218863513500355

54. Kuo, C. W., S. Y. Chen, M. H. Chen, C. F. Chang, and Y. D. Wu, "Analyzing multilayer optical waveguide with all nonlinear layers," Optics Express, Vol. 15, 2499, 2007.
doi:10.1364/OE.15.002499

55. Chung, Y. and N. Dagli, "An assessment of finite difference beam propagation method," IEEE J. Quantum Electron., Vol. 26, 1335-1339, 1990.
doi:10.1109/3.59679

56. Stegeman, G. I., E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, "Third order nonlinear integrated optics," J. Lightwave Technol., Vol. 6, 953-990, 1988.
doi:10.1109/50.4087