Vol. 44
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-10-26
Design of a Pyramidal Horn Antenna with Low E-Plane Sidelobes Using Transformation Optics
By
Progress In Electromagnetics Research M, Vol. 44, 109-118, 2015
Abstract
Transformation optics is a convenient way to control the pattern of electromagnetic fi elds. In this paper, using a novel transformation, we propose the design procedure of a horn antenna having low backlobe and sidelobe levels in its E-plane. By applying conformal transformation, the rectangular horn proposed in this paper can be realized with isotropic materials. This proposed antenna can be easily implemented by both ordinary dielectric materials and isotropic graded refractive index (GRIN) materials. In the rst proposed design, in addition to the isotropy, homogeneity is furthermore introduced into the horn, and only four kinds of isotropic materials are required throughout. In the second design, it is demonstrated that the designed structure can also be implemented by graded photonic crystals (GPCs) operating in metamaterial regime. They have low loss as well as broad frequency band and are easy to implement. Simulation results are presented to validate the design approach.
Citation
Shaghayegh Shahcheraghi, and Alireza Yahaghi, "Design of a Pyramidal Horn Antenna with Low E-Plane Sidelobes Using Transformation Optics," Progress In Electromagnetics Research M, Vol. 44, 109-118, 2015.
doi:10.2528/PIERM15030905
References

1. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley and Sons, 2012.

2. Olver, A. D., Corrugated Horns for Microwave Antennas, IET, 1984.
doi:10.1049/PBEW018E

3. Narasimhan, M. and V. Rao, "Radiation from wide-flare corrugated E-plane sectoral horns," IEEE Transactions on Antennas and Propagation, Vol. 22, 603-608, 1974.
doi:10.1109/TAP.1974.1140850

4. Zaghloul, A. I. and T. Anthony, "E-plane flared rectangular corrugated horn for tapered aperture," IEEE Antennas and Propagation Society International Symposium, 1-4, 2008.

5. Peace, G. M. and E. Swartz, "Amplitude compensated horn antenna," Microwave J, Vol. 7, 66, 1964.

6. Ata, O., T. Benson, and A. Marincic, "Application of optical ray technique to the design of short microwave horn antennas with low side lobe levels," IEE Proceedings H (Microwaves, Antennas and Propagation), 81-88, 1990.
doi:10.1049/ip-h-2.1990.0016

7. Lier, E., D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, "An octave-bandwidth negligible-loss radiofrequency metamaterial," Nature Materials, Vol. 10, 216-222, 2011.
doi:10.1038/nmat2950

8. Wu, Q., C. P. Scarborough, D. H. Werner, E. Lier, and X. Wang, "Design synthesis of metasurfaces for broadband hybrid-mode horn antennas with enhanced radiation pattern and polarization characteristics," IEEE Transactions on Antennas and Propagation, Vol. 60, 3594-3604, 2012.
doi:10.1109/TAP.2012.2201118

9. Aghanejad, I., H. Abiri, and A. Yahaghi, "Design of high-gain lens antenna by gradient-index metamaterials using transformation optics," IEEE Transactions on Antennas and Propagation, Vol. 60, 4074-4081, 2012.
doi:10.1109/TAP.2012.2207051

10. Teixeira, F. and W. Chew, "Diffon of electromagnetic waves," Journal of Electromagnetic Waves and Applications, Vol. 13, 665-686, 1999.
doi:10.1163/156939399X01104

11. Teixeira, F. L. and W. Chew, "Lattice electromagnetic theory from a topological viewpoint," Journal of Mathematical Physics, Vol. 40, 169-187, 1999.
doi:10.1063/1.532767

12. Leonhardt, U. and T. G. Philbin, "Transformation optics and the geometry of light," Progress in Optics, Vol. 53, 69-152, 2009.
doi:10.1016/S0079-6638(08)00202-3

13. Leonhardt, U. and T. G. Philbin, "General relativity in electrical engineering," New Journal of Physics, Vol. 8, 247, 2006.
doi:10.1088/1367-2630/8/10/247

14. Milton, G. W., M. Briane, and J. R. Willis, "On cloaking for elasticity and physical equations with a transformation invariant form," New Journal of Physics, Vol. 8, 248, 2006.
doi:10.1088/1367-2630/8/10/248

15. Pendry, J. B., D. Schuring, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
doi:10.1126/science.1125907

16. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628

17. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature photonics, Vol. 1, 224-227, 2007.
doi:10.1038/nphoton.2007.28

18. Cheng, Q., W. X. Jiang, and T.-J. Cui, "Investigations of the electromagnetic properties of three-dimensional arbitrarily-shaped cloaks," Progress In Electromagnetics Research, Vol. 94, 105-117, 2009.
doi:10.2528/PIER09060705

19. Lai, Y., J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. Chan, "Illusion optics: The optical transformation of an object into another object," Physical Review Letters, Vol. 102, 253902, 2009.
doi:10.1103/PhysRevLett.102.253902

20. Hu, J., X. Zhou, and G. Hu, "Design method for electromagnetic cloak with arbitrary shapes based on Laplace’s equation," Optics Express, Vol. 17, 1308-1320, 2009.
doi:10.1364/OE.17.001308

21. Chang, Z., X. Zhou, J. Hu, and G. Hu, "Design method for quasi-isotropic transformation materials based on inverse Laplaces equation with sliding boundaries," Optics Express, Vol. 18, 6089-6096, 2010.
doi:10.1364/OE.18.006089

22. Roberts, D., M. Rahm, J. Pendry, and D. Smith, "Transformation-optical design of sharp waveguide bends and corners," Applied Physics Letters, Vol. 93, 251111, 2008.
doi:10.1063/1.3055604

23. Donderici, B. and F. L. Teixeira, "Metamaterial blueprints for reflectionless waveguide bends," IEEE Microwave and Wireless Components Letters, Vol. 18, 233-235, 2008.
doi:10.1109/LMWC.2008.918869

24. Schmiele, M., V. S. Varma, C. Rockstuhl, and F. Lederer, "Designing optical elements from isotropic materials by using transformation optics," Physical Review A, Vol. 81, 033837, 2010.
doi:10.1103/PhysRevA.81.033837

25. Zhang, K., F. Meng, Q. Wu, J.-H. Fu, and L.-W. Li, "Waveguide connector constructed by normal layered dielectric materials based on embedded optical transformation," EPL (Europhysics Letters), Vol. 99, 47008, 2012.
doi:10.1209/0295-5075/99/47008

26. Mola, M. and A. Yahaghi, "Design of a broadband right-angled bend using transformation optics," Progress In Electromagnetics Research C, Vol. 56, 183-193, 2015.
doi:10.2528/PIERC14121508

27. Rahm, M., D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwells equations," Photonics and Nanostructures-fundamentals and Applications, Vol. 6, 87-95, 2008.

28. Jiang, W. X., T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, "Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces," Applied Physics Letters, Vol. 92, 264101, 2008.
doi:10.1063/1.2951485

29. Zhang, K., Q. Wu, J.-H. Fu, and L.-W. Li, "Cylindrical electromagnetic concentrator with only axial constitutive parameter spatially variant," JOSA B, Vol. 28, 1573-1577, 2011.
doi:10.1364/JOSAB.28.001573

30. Jiang, W. X., T. J. Cui, H. F. Ma, X. Y. Zhou, and Q. Cheng, "Cylindrical-to-plane-wave conversion via embedded optical transformation," Applied Physics Letters, Vol. 92, 261903, 2008.
doi:10.1063/1.2953447

31. Kong, F., B.-I. Wu, J. A. Kong, J. Huangfu, S. Xi, and H. Chen, "Planar focusing antenna design by using coordinate transformation technology," Applied Physics Letters, Vol. 91, 253509, 2007.
doi:10.1063/1.2826283

32. Zhang, J., Y. Luo, H. Chen, and B.-I. Wu, "Manipulating the directivity of antennas with metamaterial," Optics express, Vol. 16, 10962-10967, 2008.
doi:10.1364/OE.16.010962

33. Jiang, W. X., T. J. Cui, H. F. Ma, X. M. Yang, and Q. Cheng, "Layered high-gain lens antennas via discrete optical transformation," Applied Physics Letters, Vol. 93, 221906, 2008.
doi:10.1063/1.3040307

34. Tichit, P.-H., S. N. Burokur, and A. de Lustrac, "Ultradirective antenna via transformation optics," Journal of Applied Physics, Vol. 105, 104912, 2009.
doi:10.1063/1.3131843

35. Luo, Y., J. Zhang, H. Chen, J. Huangfu, and L. Ran, "High-directivity antenna with small antenna aperture ," Applied Physics Letters, Vol. 95, 193506, 2009.
doi:10.1063/1.3264085

36. Ma, H. F. and T. J. Cui, "Three-dimensional broadband and broad-angle transformation-optics lens," Nature Communications, Vol. 1, 124, 2010.
doi:10.1038/ncomms1126

37. Liu, R., C. Ji, J. Mock, J. Chin, T. Cui, and D. Smith, "Broadband ground-plane cloak," Science, Vol. 323, 366-369, 2009.
doi:10.1126/science.1166949

38. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

39. Klein, M., C. Enkrich, M. Wegener, C. Soukoulis, and S. Linden, "Single-slit split-ring resonators at optical frequencies: Limits of size scaling," Optics Letters, Vol. 31, 1259-1261, 2006.
doi:10.1364/OL.31.001259

40. Shalaev, V. M., "Optical negative-index metamaterials," Nature Photonics, Vol. 1, 41-48, 2007.
doi:10.1038/nphoton.2006.49

41. Li, J. and J. Pendry, "Hiding under the carpet: A new strategy for cloaking," Physical Review Letters, Vol. 101, 203901, 2008.
doi:10.1103/PhysRevLett.101.203901

42. Landy, N. I. and W. J. Padilla, "Guiding light with conformal transformations," Optics Express, Vol. 17, 14872-14879, 2009.
doi:10.1364/OE.17.014872

43. Ma, Y., N. Wang, and C. Ong, "Application of inverse, strict conformal transformation to design waveguide devices," JOSA A, Vol. 27, 968-972, 2010.
doi:10.1364/JOSAA.27.000968

44. Henrici, P., Applied and Computational Complex Analysis, Discrete Fourier Analysis, Cauchy Integrals, Construction of Conformal Maps, Univalent Functions, Vol. 3, John Wiley and Sons, 1993.

45. Landy, N., Y. Urzhumov, and D. R. Smith, "Quasi-conformal approaches for two and three-dimensional transformation optical media," Transformation Electromagnetics and Metamaterials, 1-32, Springer, 2014.
doi:10.1007/978-1-4471-4996-5_1

46. Vasic, B., G. Isic, R. Gajic, and K. Hingerl, "Controlling electromagnetic fields with grade photonic crystals in metamaterial regime," Optics Express, Vol. 18, 20321-20333, 2010.
doi:10.1364/OE.18.020321