Vol. 39
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-10-17
The Extended Gauge Transformations
By
Progress In Electromagnetics Research M, Vol. 39, 107-114, 2014
Abstract
In this work, new ``extended gauge transformations'' involving current and fields are presented. The transformation of Maxwell's equations under these gauges leads to a massive boson field (photon) that is equivalent to Proca field. The charge conservation equation and Proca equations are invariant under the new extended gauge transformations. Maxwell's equations formulated with Lorenz gauge condition violated give rise to massive vector boson. The inclusion of London supercurrent in Maxwell's equations yields a massive scalar boson satisfying Klein-Gordon equation. It is found that in superconductivity Lorenz gauge condition is violated, and consequently massive spin-0 bosons are created. However, the charge conservation is restored when the total current and charge densities are considered.
Citation
Arbab Ibrahim Arbab, "The Extended Gauge Transformations," Progress In Electromagnetics Research M, Vol. 39, 107-114, 2014.
doi:10.2528/PIERM14090503
References

1. Arbab, A. I., "The analogy between matter and electromagnetic waves," Europhysics Letters, Vol. 94, No. 5, 50005, 2011.
doi:10.1209/0295-5075/94/50005

2. Vigier, J. P., "Evidence for nonzero mass photons associated with a vacuum-induced dissipative red-shift mechanism," IEEE Transactions on Plasma Science, Vol. 18, No. 1, 64-72, 1990.
doi:10.1109/27.45506

3. Kar, G., M. Sinha, and S. Roy, "Maxwell equations, nonzero photon mass, and conformal metric fluctuation," Int. J. Theor. Phys., Vol. 32, 593-607, 1993.
doi:10.1007/BF00673762

4. Bardeen, J., L. N. Cooper, and J. R. Schrieffer, "Theory of superconductivity," Phys. Rev., Vol. 108, 1175, 1957.
doi:10.1103/PhysRev.108.1175

5. Bass, L. and E. Schodinger, "Must the photon mass be zero?," Proc. Roy. Soc. London A, Vol. 232, No. 1188, 1-6, 1955.
doi:10.1098/rspa.1955.0197

6. Proca, A., "Sur la theorie ondulatoire des electrons positifs et negatifs," J. Phys. Radium, Vol. 7, 347-353, 1936.
doi:10.1051/jphysrad:0193600708034700

7. Aharonov, Y. and D. Bohm, "Significance of electromagnetic potentials in the quantum theory," Phys. Rev., Vol. 115, 485, 1959.
doi:10.1103/PhysRev.115.485

8. Higgs, P. W., "Broken symmetries and the masses of gauge bosons," Phys. Rev. Lett., Vol. 13, 508, 1964.
doi:10.1103/PhysRevLett.13.508

9. Ginzburg, V. L. and L. D. Landau, "On the theory of superconductivity," Zh. Eksp. Teor. Fiz., Vol. 20, 1064-1082, 1950.

10. Tu, L.-C., J. Luo, and G. T. Gilles, "The mass of the photon," Rep. Prog. Phys., Vol. 68, 77, 2005.
doi:10.1088/0034-4885/68/1/R02

11. Lakes, R., "Experimental limits on the photon mass and cosmic magnetic vector potential," Phys. Rev. Lett., Vol. 80, 1826, 1998.
doi:10.1103/PhysRevLett.80.1826

12. Goldhaber, A. S. and M. M. Nieto, "Terrestrial and extraterrestrial limits on the photon mass," Rev. Mod. Phys., Vol. 43, 277, 1971.
doi:10.1103/RevModPhys.43.277

13. Poenaru, D. N. and A. Calboreanu, Europhysics News, Vol. 37, 24, 1990.

14. Van Vlaenderen, K. J., "generalization of classical electrodynamics for the prediction of scalar field effects," Classical Physics, 2003, http://arxiv.org/abs/physics/0305098v1.

15. Griffiths, D., Introduction to Electrodynamics, Prentice-Hall, 1999.

16. Arbab, A. I. and Z. A. Satti, "The generalized Maxwell equations and the prediction of electroscalar wave," Progress in Physics, Vol. 2, 8, 2009.

17. Arbab, A. I. and H. M. Widatalla, "The generalized continuity equation," Chinese Physics Letters, Vol. 27, 084703, 2010.
doi:10.1088/0256-307X/27/8/084703

18. Arbab, A. I., "Complex Maxwell's equations," Chin. Phys. B, Vol. 22, No. 3, 030301, 2013.
doi:10.1088/1674-1056/22/3/030301