Vol. 30
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-03-17
Materials Insertion Loss at 2.4, 3.3 and 5.5 GHz Bands
By
Progress In Electromagnetics Research M, Vol. 30, 1-10, 2013
Abstract
The insertion loss of different materials is measured at 2.4, 3.3 and 5.5 GHz bands. Directive antennas with a nominal gain of 19 dB are used in the measurement campaign. The height of the antennas has been selected to have the minimum possible reflection from around surfaces. Metallic door with porthole window, metallic grid, glass window, human beings and tree's insertion loss are measured. The metallic grid presents a band pass filter function with a resonance frequency between 3.2 to 3.3 GHz. Other materials have an insertion loss that increases with the increment of the operating frequency.
Citation
Bazil Taha-Ahmed, Ignacio Alvarez Calvo, and Jose Luis Masa-Campos, "Materials Insertion Loss at 2.4, 3.3 and 5.5 GHz Bands," Progress In Electromagnetics Research M, Vol. 30, 1-10, 2013.
doi:10.2528/PIERM13022803
References

1. Roozbahani, M. G., E. Jedari, and A. A. Shishegar, "A new link-level simulation procedure of wideband MIMO radio channel for performance evaluation of indoor WLANS," Progress In Electromagnetics Research, Vol. 83, 13-24, 2008.
doi:10.2528/PIER08040502

2. Tayebi, J. G., F. Saez de Adana, and O. Gutierrez, "The application of ray-tracing to mobile localization using the direction of arrival and received signal strength in multipath indoor environments," Progress In Electromagnetics Research, Vol. 91, 1-15, 2009.
doi:10.2528/PIER09020301

3. Bertoni, H. L., Radio Propagation for Modern Wireless Systems, Prentice Hall PTR, New Jersey, 2000.

4. Rappaport, T. S., Wireless Communications, Prentice Hall PTR, New York, 1996.

5. Saunders, S. R., Antennas and Propagation for Wireless Communication Systems, J. Wiley & Sons, New York, 1999.

6. Kara, A., "Human body shadowing variability in short-range indoor radio links at 3{11 GHz band," International Journal of Electronics, Vol. 96, No. 2, 205-211, February 2009.
doi:10.1080/00207210802524302

7. Kara, A. and H. L. Bertoni, "Effect of people moving near short-range indoor propagation links at 2.45 GHz," Journal of Communications and Networks, Vol. 8, No. 3, 286-289, September 2006.

8. Taha Ahmed, B., D. F. Campillo, and J. L. Masa Campos, "Short range propagation model for a very wideband directive channel at 5.5 GHz band," Progress In Electromagnetics Research, Vol. 130, 319-346, 2012.

9. Choi, J., N.-G. Kang, J.-M. Ra, J.-S. Kang, and S.-C. Kim, "Effect of metal door on indoor radio channel," The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'07), 1-5, 2007.
doi:10.1109/PIMRC.2007.4394075

10. Chee, K. L., A. Anggraini, T. Kaiser, and T. Kurner, "Outdoor-to-indoor propagation loss measurements for broadband wireless access in rural areas," Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 1376-1380, 2011.

11. Nagy, L., "FDTD and ray optical methods for indoor wave propagation modeling," Microwave Review, 47-53, July 2010.