Vol. 30
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-05-08
Collocated Sibc-FDTD Method for Coated Conductors at Oblique Incidence
By
Progress In Electromagnetics Research M, Vol. 30, 239-252, 2013
Abstract
A collocated surface impedance boundary condition (SIBC)-finite difference time domain (FDTD) method is developed for conductors coated with lossy dielectric coatings at oblique incidence. The method is based on the collocated electric and magnetic field components on the planar interface between two media, and rational approximation for tangent function of surface impedance formulation is adopted. In contrast to the traditional SIBC-FDTD implementation which is approximated with the magnetic field component on the boundary located at half-cell distance from the interface and half time step earlier in time, the collocation approach is more accurate for both magnitude and phase of reflection coefficient. By the comparison with exact results, the proposed model is numerically verified in the frequency domain for both parallel polarization plane wave and vertical polarization plane wave at varying oblique angles of incidence.
Citation
Lijuan Shi, Lixia Yang, Hui Ma, and Jianning Ding, "Collocated Sibc-FDTD Method for Coated Conductors at Oblique Incidence," Progress In Electromagnetics Research M, Vol. 30, 239-252, 2013.
doi:10.2528/PIERM13022512
References

1. Hu, X. J. and D. B. Ge, "Study on conformal FDTD for electromagnetic scattering by targets with thin coating," Progress In Electromagnetics Research, Vol. 79, 305-319, 2008.
doi:10.2528/PIER07101902

2. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering of two or more incident plane waves by a perfect electromagnetic conductor cylinder coated with a metamaterial," Progress In Electromagnetics Research B, Vol. 10, 75-90, 2008.
doi:10.2528/PIERB08083101

3. Ruppin, R., "Scattering of electromagnetic radiation by a coated perfect electromagnetic conductor sphere," Progress In Electromagnetics Research Letters, Vol. 8, 53-62, 2009.
doi:10.2528/PIERL09041502

4. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering from a chiral-coated nihility cylinder,"," Progress In Electromagnetics Research Letters, Vol. 18, 41-50, 2010.
doi:10.2528/PIERL10072807

5. Taflove, A. and S. Hagness, "Computational Electrodynamics: The Finite-difference Time-domain Method," Artech House, Norwood, MA, 2000.

6. Ge, D. B. and Y. B. Yan, Finite-difference Time-domain Method for Electromagnetic Waves, 3rd Ed., Xidian University Press, 2011 (in Chinese).

7. Maloney, J. G. and G. S. Smith, "The use of surface impedance concepts in the finite-difference time-domain method," IEEE Trans. on Antennas and Propag., Vol. 40, No. 1, 38-48, 1992.
doi:10.1109/8.123351

8. Beggs, J. H., R. J. Luebbers, K. S. Yee, and K. S. Kunz, "Finite-difference time-domain implementation of surface impedance boundary conditions," IEEE Trans. on Antennas and Propag., Vol. 40, No. 1, 49-56, 1992.
doi:10.1109/8.123352

9. Lee, C. F., R. T. Shin, and J. A. Kong, "Time domain modeling of impedance boundary conditions," IEEE Trans. on Microwave Theory and Tech., Vol. 40, No. 9, 1847-1850, 1992.
doi:10.1109/22.156615

10. Kellali, S., B. Jecko, and A. Reineix, "Implementation of a surface impedance formalism at oblique incidence in FDTD method," IEEE Trans. on Electrom. Compat., Vol. 35, 347-356, 1993.
doi:10.1109/15.277309

11. Oh, K. S. and J. E. Schutt-Aine, "An efficient implementation of surface impedance boundary conditions for the finite-difference time-domain method," IEEE Trans. on Antennas and Propag., Vol. 43, No. 7, 660-666, 1995.
doi:10.1109/8.391136

12. Karkkainen, M. K., "FDTD surface impedance model for coated conductors," IEEE Trans. on Electrom. Compat., Vol. 46, No. 2, 222-233, 2004.
doi:10.1109/TEMC.2004.826891

13. Karkkainen, M. K., "FDTD model of electrically thick frequency-dispersive coatings on metals and semiconductors based on surface impedance boundary conditions," IEEE Trans. on Antennas and Propag., Vol. 53, No. 3, 1174-1186, 2005.
doi:10.1109/TAP.2004.842655

14. Kobidze, G., "Implementation of collocated surface impedance boundary conditions in FDTD," IEEE Trans. on Antennas and Propag., Vol. 58, No. 7, 2394-2403, 2010.
doi:10.1109/TAP.2010.2048859

15. Luebbers, R. J., F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Trans. on Electrom. Compat., Vol. 32, No. 3, 222-227, 1990.
doi:10.1109/15.57116

16. Yang, , L. X., Y. T. Xie, W. Kong, P. P. Yu, and G. Wang, "A novel finite-difference time-domain scheme for electromagnetic scattering by stratified anisotropic plasma under oblique incidence condition," Acta Physica Sinica, Vol. 59, No. 9, 6089-6095, 2010 (in Chinese).