1. Alyones, S., C. W. Bruce, and A. K. Buin, "Numerical methods for solving the problem of electromagnetic scattering by a finite thin conducting fiber," IEEE Trans. Antennas Propag., Vol. 55, 1856-1861, 2007.
doi:10.1109/TAP.2007.898579
2. Bruce, C. W. and S. Alyones, "Visible and infrared optical properties of stacked cone graphitic microtubes," Appl. Opt., Vol. 51, No. 16, Jun. 201.
3. Alyones, S. and C. W. Bruce, "Electromagnetic scattering by finite conducting fiber: Limitation of a previous published code," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 7, 1021-1030, 2011.
doi:10.1163/156939311795253948
4. Bruce, C. W. and S. Alyones, "Extinction efficiencies for metallic fibers in the infrared," Appl. Opt., Vol. 48, 5095-5098, 2009.
doi:10.1364/AO.48.005095
5. Bruce, C. W., A. V. Jelinek, S. Wu, S. Alyones, and Q. S. Wang, "Millimeter-wavelength investigation of fibrous aerosol absorption and scattering properties," Appl. Opt., Vol. 43, 6648-6655, 2004.
doi:10.1364/AO.43.006648
6. Velasgo, V. G., "The electrodynamics of substances with simultaneously negative values of epsilon and mu," Sov. Phys. Uspekhi, Vol. 10, 1968.
7. Pendry, J. B., A. Holden, D. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 1999.
8. Simons, R. N., Coplaner Waveguide Circuits, Components, and Systems, Wiley-IEEE Press, 2001.
doi:10.1002/0471224758
9. Wolff, I., Coplanar Microwave Integrated Circuits, Wiley-Interscience, 2006.
doi:10.1002/0470040882
10. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, Apr. 2001.
doi:10.1126/science.1058847
11. Al-Naib, I. A. I., C. Jansen, and M. Koch, "High Q-factor metasurfaces based on miniaturized asymmetric single split resonator," Appl. Phys. Lett., Vol. 94, 2009.
12. Fedotov, V. A., M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, "Sharp trapped resonances in planar metamaterials with a broken structural symmetry," Phys. Rev. Lett., Vol. 99, 2007.
13. Elwi, T. A., "A further investigation on the performance of the broadside coupled rectangular split ring resonators," Progress In Electromagnetic Research Letters, Vol. 34, 1-8, 2012.
14. Penciu, R. S., K. Aydin, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, "Multigap individual and coupled split-ring resonator structures," Optical Society of America, Vol. 16, No. 22, 1-14, Oct. 2008.
15. Marques, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design theory and experiments," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 33-41, Oct. 2003.
16. Balmaz, P. G. and O. J. F. Martin, "Electromagnetic resonances in individual and coupled split-ring resonators," J. Appl. Phys., Vol. 92, No. 5, 2929-2936, Jun. 2002.
doi:10.1063/1.1497452
17. Hong, J. S. and M. J. Lancaster, "Design of highly selective microstrip bandpass filters with a single pair of attenuation poles at finite frequencies," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 7, 2000.
18. Shelkovnikov, A. and D. Budimir, "Left-handed rectangular waveguide bandstop filters," Microwave and Optical Technology Letters, Vol. 48, 2006.
19. Rigi-Tamandani, A., J. Ahmadi-Shokouh, and S. Tavakoli, "Wideband planar split ring resonator based metamaterials," Progress In Electromagnetic Research M, Vol. 28, 115-128, 2013.
20. CST microwave studio, Sonnet Software Inc., , http://www.CST.com.
21. Jin, X., J. Park, H. Zheng, S. Lee, Y. Lee, J. Rhee, K. Kim, H. S. Cheong, and W. Jang, "Highly-dispersive transparency at the optical frequencies in planar metamaterials based on two-bright-mode coupling," Optics Express, Vol. 19, 22, 2011.
doi:10.1364/OE.19.026429