Vol. 30
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-04-17
Design of Metaparticles as Sharp Frequency-Selective Obscurant Aerosols
By
Progress In Electromagnetics Research M, Vol. 30, 141-152, 2013
Abstract
In this article, artificial aerosol metaparticles are investigated. These particles are based on interacting single split rectangular resonators (SRRs) imprinted on a one-sided thin dielectric substrate. These particles produce sharper transmission bandstops with adjustable bandwidths compared to conventional artificial aerosol obscurants like fibers, spheres, discs. The particle design is performed in the microwave region with the intention to be scalable to the infrared. Particles with couplings between two, three, and four SRRs are introduced. Numerical simulations and experimental measurements of the transmission parameter of the particles are introduced and compared with fibrous aerosols. These particles may be used as good electromagnetic obscurants in the atmosphere.
Citation
Sharhabeel Alyones, Al. V. Jelinek, Michael Granado, and Charles W. Bruce, "Design of Metaparticles as Sharp Frequency-Selective Obscurant Aerosols," Progress In Electromagnetics Research M, Vol. 30, 141-152, 2013.
doi:10.2528/PIERM13020706
References

1. Alyones, S., C. W. Bruce, and A. K. Buin, "Numerical methods for solving the problem of electromagnetic scattering by a finite thin conducting fiber," IEEE Trans. Antennas Propag., Vol. 55, 1856-1861, 2007.
doi:10.1109/TAP.2007.898579

2. Bruce, C. W. and S. Alyones, "Visible and infrared optical properties of stacked cone graphitic microtubes," Appl. Opt., Vol. 51, No. 16, Jun. 201.

3. Alyones, S. and C. W. Bruce, "Electromagnetic scattering by finite conducting fiber: Limitation of a previous published code," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 7, 1021-1030, 2011.
doi:10.1163/156939311795253948

4. Bruce, C. W. and S. Alyones, "Extinction efficiencies for metallic fibers in the infrared," Appl. Opt., Vol. 48, 5095-5098, 2009.
doi:10.1364/AO.48.005095

5. Bruce, C. W., A. V. Jelinek, S. Wu, S. Alyones, and Q. S. Wang, "Millimeter-wavelength investigation of fibrous aerosol absorption and scattering properties," Appl. Opt., Vol. 43, 6648-6655, 2004.
doi:10.1364/AO.43.006648

6. Velasgo, V. G., "The electrodynamics of substances with simultaneously negative values of epsilon and mu," Sov. Phys. Uspekhi, Vol. 10, 1968.

7. Pendry, J. B., A. Holden, D. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 1999.

8. Simons, R. N., Coplaner Waveguide Circuits, Components, and Systems, Wiley-IEEE Press, 2001.
doi:10.1002/0471224758

9. Wolff, I., Coplanar Microwave Integrated Circuits, Wiley-Interscience, 2006.
doi:10.1002/0470040882

10. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, Apr. 2001.
doi:10.1126/science.1058847

11. Al-Naib, I. A. I., C. Jansen, and M. Koch, "High Q-factor metasurfaces based on miniaturized asymmetric single split resonator," Appl. Phys. Lett., Vol. 94, 2009.

12. Fedotov, V. A., M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, "Sharp trapped resonances in planar metamaterials with a broken structural symmetry," Phys. Rev. Lett., Vol. 99, 2007.

13. Elwi, T. A., "A further investigation on the performance of the broadside coupled rectangular split ring resonators," Progress In Electromagnetic Research Letters, Vol. 34, 1-8, 2012.

14. Penciu, R. S., K. Aydin, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, "Multigap individual and coupled split-ring resonator structures," Optical Society of America, Vol. 16, No. 22, 1-14, Oct. 2008.

15. Marques, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design theory and experiments," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 33-41, Oct. 2003.

16. Balmaz, P. G. and O. J. F. Martin, "Electromagnetic resonances in individual and coupled split-ring resonators," J. Appl. Phys., Vol. 92, No. 5, 2929-2936, Jun. 2002.
doi:10.1063/1.1497452

17. Hong, J. S. and M. J. Lancaster, "Design of highly selective microstrip bandpass filters with a single pair of attenuation poles at finite frequencies," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 7, 2000.

18. Shelkovnikov, A. and D. Budimir, "Left-handed rectangular waveguide bandstop filters," Microwave and Optical Technology Letters, Vol. 48, 2006.

19. Rigi-Tamandani, A., J. Ahmadi-Shokouh, and S. Tavakoli, "Wideband planar split ring resonator based metamaterials," Progress In Electromagnetic Research M, Vol. 28, 115-128, 2013.

20. CST microwave studio, Sonnet Software Inc., , http://www.CST.com.

21. Jin, X., J. Park, H. Zheng, S. Lee, Y. Lee, J. Rhee, K. Kim, H. S. Cheong, and W. Jang, "Highly-dispersive transparency at the optical frequencies in planar metamaterials based on two-bright-mode coupling," Optics Express, Vol. 19, 22, 2011.
doi:10.1364/OE.19.026429