Vol. 29
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-03-08
Effect of Particle Size of BaFe 12O19 on the Microwave Absorption Characteristics in X-Band
By
Progress In Electromagnetics Research M, Vol. 29, 223-236, 2013
Abstract
Present work deals with the microwave absorption characteristics of BaFe12O19 of interest as radar absorbing material (RAM). There are very few reported works available where particle size has been critically analyzed for absorbing characteristics at microwave frequencies, therefore, in this paper microwave absorption properties of the BaFe12O19 with different particle sizes were investigated. The results showed that the particle size had significant influence on the dielectric and absorption properties of the composites in the 8.2-12.4 GHz frequency range. BaFe12O19 powder of different particle sizes were synthesized by varying the annealing time and it was observed that the real part of permittivity of the composite increases from 5.18 (average value) to 7.50 (average value) and imaginary part increases from an average value of 0.20 to an average value of 2.33, whereas the real part of permeability increases from 0.95 (average value) to 1.11 (average value) and imaginary part of permeability was measured in the range of 0.02 to 0.07. These changes in permittivity and permeability affects microwave absorption application. It is observed that the maximum bandwidth for average particle size of 240 nm is 3.02 GHz and with the increase in average particle size, microwave absorption properties increased.
Citation
Abhishek Kumar, Vijaya Agarwala, and Dharmendra Singh, "Effect of Particle Size of BaFe 12O19 on the Microwave Absorption Characteristics in X-Band," Progress In Electromagnetics Research M, Vol. 29, 223-236, 2013.
doi:10.2528/PIERM13011604
References

1. Vinoy, K. J. and R. M. Jha, "Trends in radar absorbing materials technology," Sadhana, Vol. 20, 815-850, 1995.
doi:10.1007/BF02744411

2. Singh, P., V. K. Babbar, A. Razdan, S. L. Srivastava, V. K. Agrawal, and T. C. Goel, "Dielectric constant, magnetic permeability and microwave absorption studies of hot-pressed Ba-CoTi hexaferrite composites in X-band," Journal of Material Science, Vol. 41, 7190-7196, 2006.
doi:10.1007/s10853-006-0921-y

3. Mu, G., N. Chen, X. Pan, H. Shen, and M. Gu, "Preparation and microwave absorption properties of Barium ferrite nanorods," Materials Letters, Vol. 62, 840-842, 2008.
doi:10.1016/j.matlet.2007.06.074

4. Ohlan, A., K. Singh, N. Gandhi, A. Chandra, S. K. Dhawan, and , "Microwave absorption properties of NiCoFe2O4-graphite embed- ded poly (o-phenetidine) nanocomposites," AIP Advances, Vol. 1, 032157, 2011.
doi:10.1063/1.3642603

5. Ozgiir, U., Y. Alivov, and H. Morkoc, "Microwave ferrites, Part 1: Fundamental properties," Journal of Material Science: Materials Electronics, Vol. 20, 789-834, 2009.
doi:10.1007/s10854-009-9923-2

6. Hlavacek, V. and J. A. Puszynski, "Chemical engineering aspects of advanced ceramic materials," Industrial & Engineering Chemistry Research,, Vol. 35, 349-377, 1996.
doi:10.1021/ie9501034

7. Liu, M., X. Shen, F. Song, J. Xiang, and R. Liu, "Effect of heat treatment on particle growth and magnetic properties of electrospun Sr0.8La0.2Zn0.2Fe11.8O19 nano fibers," Journal of SolGel Science and Technology, Vol. 59, 553-560, 2011.
doi:10.1007/s10971-011-2526-4

8. Bezerra, , C. W. B., L. Zhang, H. Liu, K. Lee, A. L. B. Marques, E. P. Marques, H. Wang, and J. Zhang, "A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction," Journal of Power Sources, Vol. 173, 891-908, 2007.
doi:10.1016/j.jpowsour.2007.08.028

9. Meshram, M., N. K. Agrawal, B. Sinha, and P. S. Misra, "Characterization of (Co-Mn-Ti) substituted M-type Barium hexagonal ferrite based microwave absorber at X-band," IEEE Proceedings of 6th International Symposium on Antennas, Propagation and EM Theory,, 746-749, 2003.

10. Tang, X., Y. Yang, and K. Hu, "Structure and electromagnetic behavior of BaFe12-2x(Ni0.8Ti0.7)xO19-0.8x in the 2-12 GHz frequency range," Journal of Alloys and Compounds, Vol. 477, 488-492, 2009.
doi:10.1016/j.jallcom.2008.10.052

11. Kumar, A., V. Agarwala, and D. Singh, "Effect of Mg-substitution on microwave absorption of BaFe12O19," Advanced Materials Research, Vol. 585, 62-66, 2012.
doi:10.4028/www.scientific.net/AMR.585.62

12. Qiua, , J., M. Gu, and H. Shen, "Microwave absorption properties of Al- and Cr-substituted M-type barium hexaferrite," Journal of Magnetism and Magnetic Materials, Vol. 295, 263-268, 2005.
doi:10.1016/j.jmmm.2005.01.018

13. Qiu, J., Y. Wang, and M. Gu, "Effect of Cr substitution on microwave absorption of BaFe12O19," Materials Letter, Vol. 60, 2728-2732, 2006.
doi:10.1016/j.matlet.2006.01.079

14. Panda, R. N., J. C. Shih, and T. S. Chin, "Magnetic properties of nano-crystalline Gd- or Pr-substituted CoFe2O4 synthesized by the citrate precursor technique," Journal of Magnetism and Magnetic Material, Vol. 257, 79-86, 2003.
doi:10.1016/S0304-8853(02)01036-3

15. Tyagi, S., H. B. Baskey, R. C. Agarwala, V. Agarwala, and T. C. Shami, "Development of hard/soft ferrite nanocomposite for enhanced microwave absorption," Ceramics International, Vol. 37, 2631-2641, 2011.
doi:10.1016/j.ceramint.2011.04.012

16. Tyagi, S., H. B. Baskey, R. C. Agarwala, V. Agarwala, and T. C. Shami, "Reaction kinetic, magnetic and microwave absorption studies of SrFe12O19/CoFe2O4 ferrite nanocrystals," Transactions of the Indian Institute of Metals, Vol. 64, 271-277, 2011.
doi:10.1007/s12666-011-0055-z

17. Zhang, H., M. Wu, X. Yao, and L. Zhang, "Complex permittivity, permeability, and microwave absorption of Barium ferrite by citrate sol-gel process," Rare Metals, Vol. 22, 125-130, 2003.

18. Holland, T. J. B. and S. A. T. Redfern, "Unit cell refinement from powder di®raction data: The use of regression diagnostics," Mineralogical Magazine, Vol. 61, 65-67, 1997.
doi:10.1180/minmag.1997.061.404.07

19. Meza, V. A., X. Gratens, and R. F. Jardim, "Preparation and general physical properties of polycrystalline PrBa2Cu3O77-y obtained from sol-gel precursors," Brazilian Journal of Physics, Vol. 32, 731-738, 2002.
doi:10.1590/S0103-97332002000400010

20. Sharma, R., R. C. Agarwala, and V. Agarwala, "Development of radar absorbing nano crystals by microwave irradiation," Materials Letters, Vol. 62, 2233-2236, 2008.
doi:10.1016/j.matlet.2007.11.076

21. Taylor, P., "Ostwald ripening in emulsions," Advances in Colloid and Interface Science, Vol. 75, 107-163, 1998.
doi:10.1016/S0001-8686(98)00035-9

22. Bahadoor, A., Y. Wang, and M. N. Afsar, "Complex permittivity and permeability of barium and strontium ferrite powders in X, Ku, and K-band frequency ranges ," Journal of Applied Physics, Vol. 97, 10F105-1-10F105-3, 2005.
doi:10.1063/1.1853633

23. Giannakopoulou, T., L. Kompotiatis, A. Kontogeorgakos, and G. Kordas, "Microwave behavior of ferrites prepared via sol-gel method," Journal of Magnetism and Magnetic Materials, Vol. 246, 360-365, 2002.
doi:10.1016/S0304-8853(02)00106-3

24. Zhang, H., Z. Liu, C. Ma, Y. Xi, L. Zhang, and M. Wu, "Complex permittivity, permeability, and microwave absorption of Zn- and Ti-substituted barium ferrite by citrate sol-gel process," Materials Science and Engineering B, Vol. 96, 289-295, 2002.
doi:10.1016/S0921-5107(02)00381-1

25. Zou, H., S. Li, L. Zhang, S. Yan, H. Wu, S. Zhang, and M. Tian, "Determining factors for high performance silicone rubber microwave absorbing materials," Journal of Magnetism and Magnetic Materials, Vol. 323, 1643-1651, 2011.
doi:10.1016/j.jmmm.2011.01.028

26. Zhou, Z., L. Chu, and S. Hu, "Microwave absorption behaviors of tetra-needle-like ZnO whiskers," Materials Science and Engineering B, Vol. 126, 93-96, 2006.
doi:10.1016/j.mseb.2005.09.009