Vol. 29
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-02-14
Isolated Open-Ring Defected Ground Structure to Reduce Mutual Coupling Between Circular Microstrips: Characterization and Experimental Verification
By
Progress In Electromagnetics Research M, Vol. 29, 109-119, 2013
Abstract
A recently developed technique to design and model an isolated Defected Ground Structure (DGS) has been employed to successfully design and characterize a DGS to be used in between two microstrip patches to reduce their mutual coupling. This is the only technique that can handle isolated DGS and as such has been explored for microstrip antennas in this paper for the firt time. An X-band design has been examined. A prototype is used to obtain measured data which are employed to verify the technique experimentally for microstrip array.
Citation
Sujoy Biswas, and Debatosh Guha, "Isolated Open-Ring Defected Ground Structure to Reduce Mutual Coupling Between Circular Microstrips: Characterization and Experimental Verification," Progress In Electromagnetics Research M, Vol. 29, 109-119, 2013.
doi:10.2528/PIERM12121406
References

1. Guha, D. and Y. M. M. Antar, Microstrip and Printed Antennas: New Trends, Techniques and Applications, Ch. 12, Wiley, UK, 2011.

2. Guha, D., M. Biswas, and Y. M. M. Antar, "Microstrip patch antenna with defected ground structure for cross polarization suppression," IEEE Antennas Wireless Propagation Lett., Vol. 4, 455-458, 2005.
doi:10.1109/LAWP.2005.860211

3. Guha, D., S. Biswas, M. Biswas, J. Y. Siddiqui, and Y. M. M. Antar, "Concentric ring-shaped defected ground structures for microstrip applications," IEEE Antennas Wireless Propagation Lett., Vol. 5, 402-405, 2006.
doi:10.1109/LAWP.2006.880691

4. Salehi, M., A. Motevasselian, A. Tavakoli, and T. Heidari, "Mutual coupling reduction of microstrip antennas using defected ground structure," 10th IEEE International Conference on Communication Systems, 1-5, 2006.

5. Moghadas, H., A. Tavakoli, and M. Salehi, "Elimination of scan blindness in microstrip scanning array antennas using defected ground structure," Int. J. Electron. Commun. (AEU), 155-158, 2008.
doi:10.1016/j.aeue.2007.02.009

6. Hou, D.-B., et al. "Elimination of scan blindness with compact defected ground structures in microstrip phased array," IET Microwave Antennas Propag., Vol. 3, No. 2, 269-275, 2009.
doi:10.1049/iet-map:20080037

7. Guha, D., S. Biswas, T. Joseph, and M. T. Sebastian, "Defected ground structure to reduce mutual coupling between cylindrical dielectric resonator antennas," Electronic Lett., Vol. 44, 836-837, 2005.

8. Mahmoudian, A. and J. Rashed-Mohassel, "Reduction of EMI and mutual coupling in array antennas by using DGS and AMC structures," PIERS Online, Vol. 4, No. 1, 36-40, 2008.

9. Zulkifli, i, F. Y., E. T. Rahardjo, and D. Hartanto, "Mutual coupling reduction using dumbbell defected ground structure for multiband microstrip antenna array," Progress In Electromagnetics Research Letters, Vol. 13, 29-40, 2010.
doi:10.2528/PIERL09102902

10. Vazquez, C., G. Hotopan, S. Ver Hoeye, M. Fernandez, L. F. Herran, and F. Las-Heras, "Defected ground structure for coupling reduction between probe fed microstrip antenna elements," PIERS Proceedings, 640-644, Cambridge, USA, Jul. 5-8, 2010.

11. Abdel-Rahaman, A. B., "Coupling reduction of antenna array elements using small interdigital capacitor loaded slots," Progress In Electromagnetics Research C, Vol. 27, 15-26, 2012.
doi:10.2528/PIERC11111809

12. Biswas, S. and D. Guha, "Stop-band characterization of an isolated DGS for reducing mutual coupling between adjacent antenna elements and experimental verification for dielectric resonator antenna array," Int. J. Electron. Commun. (AEU), 2012.

13. Guha, D., "Resonant frequency of circular microstrip antennas with and without air gaps," IEEE Trans. Antennas and Propag., Vol. 49, No. 1, 55-59, 2001.
doi:10.1109/8.910530

14., High Frequency Structure Simulator (HFSS), Ansoft, v 11.1.
doi:10.1109/8.910530

15. Ahn, D., J. S. Park, C. S. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 1, 86-93, Jan. 2001.
doi:10.1109/22.899965

16. Chang, I. and B. Lee, "Design of defected ground structures for harmonic control of active microstrip antenna," IEEE Antennas and Propagation Society International Symposium, Vol. 2, 852-855, 2002.

17. Hong, J. S. and M. J. Lancaster, "Microstrip Filters for RF/Microwave Applications," John Wiley & Sons, Inc., 2001.

18. Gupta, K. C., R. Garg, I. Bhal, and P. Bhartia, Microstrip Lines and Slotlines, Artech House, UK, 1996.

19., Ansoft Designer, Ansoft, v 2.0.