Vol. 24
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-06-04
TM Mode Analysis in a Metamaterial Based Dielectric Waveguide
By
Progress In Electromagnetics Research M, Vol. 24, 221-234, 2012
Abstract
A TM mode analysis in a metamaterial based dielectric waveguide is proposed and introduced. Rigorously derived from Maxwell's equations, the dispersion properties are focussed on the fundamental properties of bound, surface and leaky modes of metamaterial based dielectric waveguide. Comparing with the conventional right handed material based waveguide, typical backward wave characteristic of volume and surface wave modes are found from the distribution of Poynting power to the transverse direction of waveguide.
Citation
Cheng Jin, Arokiaswami Alphones, and Manisha M. Dhirendra, "TM Mode Analysis in a Metamaterial Based Dielectric Waveguide," Progress In Electromagnetics Research M, Vol. 24, 221-234, 2012.
doi:10.2528/PIERM12042407
References

1. Veselago, V. G., "Electrodynamics of substances with simultaneously negative values of sigma and mu," Soviet Physics Uspekhi-Ussr, Vol. 10, 509, 1968.

2. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

4. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

5. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

6. Eleftheriades, G. V., A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 50, 2702-2712, 2002.
doi:10.1109/TMTT.2002.805197

7. Caloz, C. and T. Itoh, "Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line," IEEE Trans. Antennas Propagat., Vol. 52, 1159-1166, 2004.
doi:10.1109/TAP.2004.827249

8. Tsutsumi, M., C. Jin, and A. Alphones, "Leaky wave phenomenon from double periodic left handed waveguide," Asia-Pacific Microwave Conf., 1238-1241, Singapore, 2009.

9. Jin, C., A. Alphones, and M. Tsutsumi, "Leaky-wave characteristics from double periodic composite right/left handed transmission lines," IET Proc. Microwave Antennas Propag., Vol. 5, No. 12, 1399-1407, 2011.
doi:10.1049/iet-map.2010.0351

10. Jin, C., A. Alphones, and M. Tsutsumi, "Double periodic composite right/left handed transmission line and its applications to compact leaky-wave antennas," IEEE Trans. Antennas Propagat., Vol. 59, No. 10, 3679-3686, 2011.
doi:10.1109/TAP.2011.2163752

11. Jin, C. and A. Alphones, "Leaky-wave radiation behavior from a double periodic composite right/left handed substrate integrated waveguide," IEEE Trans. Antennas Propagat., Vol. 60, No. 4, 1727-1735, 2012.
doi:10.1109/TAP.2012.2186248

12. Caloz, C. and T. Itoh, Electromagnetic Metamaterials Transmission Line Theory and Microwave Applications, Wiley, New York, 2006.

13. Yu, F. Y. A. and A. Z. Elsherbeni, "A dual band circularly polarized ring antenna based on composite right and left handed metamaterials," Progress In Electromagnetics Research, Vol. 78, 73-81, 2008.
doi:10.2528/PIER07082902

14. Jin, C., A. Alphones, and L. C. Ong, "Broadband leaky-wave antenna based on composite right/left handed substrate integrated waveguide," Electron. Lett., Vol. 46, No. 24, 1584-1585, 2010.
doi:10.1049/el.2010.2628

15. Zhou, X. Z. B., H. Li, and T.-J. Cui, "Broadband and high-gain planar vivaldi antennas based on inhomogeneous anisotropic zeroindex metamaterials," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011.

16. Huang, J.-Q. and Q.-X. Chu, "Compact UWB band-pass filter utilizing modified composite right/left-handed structure with cross coupling," Progress In Electromagnetics Research, Vol. 107, 179-186, 2010.
doi:10.2528/PIER10070403

17. Garcia-Perez, D. S.-V. O., L. E. Garcia-Munoz, and V. Gonzalez- Posadas, "Multiple order dual-band active ring filters with composite right/left-handed cells," Progress In Electromagnetics Research, Vol. 104, 201-219, 2010.
doi:10.2528/PIER10022311

18. Jin, C. and A. lphones, "Compact interdigital microstrip band pass filter," Microwave Opt. Technol. Lett., Vol. 52, 2128-2132, 2010.

19. Collin, R. E. and F. J. Zucker, Antenna Theory, 2nd edition, McGraw-Hill, New York, London, 1969.

20. Seshadri, S. R., "Search results coupling of guided modes in thin films with surface corrugation," J. of Appl. Phys., Vol. 63, R115-R146, 1988.
doi:10.1063/1.340381

21. Alphones, A. and M. Tsutsumi, "Leaky-wave radiation from a periodically photoexcited semiconductor slab waveguide," IEEE Trans. Microw. Theory Tech., Vol. 43, 2435-2441, 1995.
doi:10.1109/22.414600

22. Yakovlev, A. B., M. G. Silveirinha, O. Luukkonen, C. R. Simovski, I. S. Nefedov, and S. A. Tretyakov, "Characterization of surfacewave and leaky-wave propagation on wire-medium slabs and mushroom structures based on local and nonlocal homogenization models," IEEE Trans. Microw. Theory Tech., Vol. 57, 2700-2714, 2009.
doi:10.1109/TMTT.2009.2031933

23. Aznar, F., M. Gil, J. Bonache, and F. Martin, "Revising the equivalent circuit models of resonant-type metamaterial transmission lines," IEEE MTTS International Microwave Symposium Digest, 322-325, Atlanta, GA, 2008.

24. Cassivi, Y., L. Perregrini, P. Arcioni, M. Bressan, K. Wu, and G. Conciauro, "Dispersion characteristics of substrate integrated rectangular waveguide," IEEE Microw. and Wireless Compon. Lett., Vol. 12, 333-335, 2002.
doi:10.1109/LMWC.2002.803188

25. Pozar, D. M., Microwave Engineering, 3rd Edition, Wiley, New York, 2004.

26. Kasraian, M., "Double-grating thin-film devices based on secondorder Bragg interaction," J. of Appl. Phys., Vol. 75, 7639-7652, 1994.
doi:10.1063/1.356595

27. Collin, R. E., Field Theory of Guided Waves, IEEE Press, New York, 1990.
doi:10.1109/9780470544648

28. Smith, D. R., D. C. Vier, N. Kroll, and S. Schultz, "Direct calculation of permeability and permittivity for a left-handed metamaterial," Appl. Phys. Lett., Vol. 77, No. 14, 2246-2248, 2000.
doi:10.1063/1.1314884

29. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E, Vol. 64, 056625, 2001.

30. Iyer, A. K. and G. V. Eleftheriades, "Negative refractive index metamaterials supporting 2-D waves," IEEE MTT-S In- ternational Microwave Symposium Digest, 1067-1070, Hamilton, R., Ed., 2002.