Vol. 23
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-02-18
Multiphysics Modeling of a Magnetic Refrigeration System Based on Superconductors
By
Progress In Electromagnetics Research M, Vol. 23, 229-247, 2012
Abstract
Based on the magnetocaloric effect, magnetic refrigeration at room temperature has, for the past decade, been a promising and environmentally friendly technology predicted to have a significantly higher efficiency than the present conventional methods. However, to the authors' knowledge, so far no prototypes have been presented for large scale applications. This paper presents the modeling of a superconducting-based magnetic refrigeration system for large scale applications. On one hand, electromagnetic computations are undertaken to maximize magnetic field produced in order to get the best performance (temperature span and cooling power) and to limit the mechanical efforts (forces and torque). On the other hand, the thermal modeling aims to evaluate and to optimize the cooling performance.
Citation
Houssem Rafik El Hana Bouchekara, Mohammed T. Simsim, M. Boucherma, and Hicham Allag, "Multiphysics Modeling of a Magnetic Refrigeration System Based on Superconductors," Progress In Electromagnetics Research M, Vol. 23, 229-247, 2012.
doi:10.2528/PIERM11111608
References

1. Allab, F., "Conception et realisation d'un dispositif de refrigeration magnetique base sur l'effet magnetocalorique et dedie a la climatisation automobile,", These de doctorat, Grenoble, Institut National Polytechnique de Grenoble, 2008.
doi:10.1016/j.ijrefrig.2009.12.012

2. Bjork, R., Bahl, C. R. H., A. Smith, and N. Pryds, "Review and comparison of magnet designs for magnetic refrigeration," International J. of Refrigeration, Vol. 33, No. 3, 437-448, 2010.

3. Bjork, R., C. R. H. Bahl, A. Smith, and N. Pryds, "On the optimal magnet design for magnetic refrigeration," Proceedings of the 3rd International Conference on Magnetic Refrigeration at Room Temperature, 473-480, Des Moines, Iowa, USA, 2009.

4. Bouchekara, H. R. E. H., "Recherche sur les systemes de refrigeration magetique. Modelisation numerique, conception et optimisatio,", These de doctorat, Grenoble Institut National Polytechnique, 2008.
doi:10.2528/PIERM11062708

5. Bouchekara, H. R. E. H., A. Lebouc-Kedous, and J. P. Yonnet, "Electromagnetic design of a magnetic field source for a magnetocaloric refrigerator," Progress In Electromagnetics Research M, Vol. 19, 251-263, 2011.
doi:10.2528/PIERM11062706

6. Bouchekara, H. R. E. H., M. T. Simsim, Y. Berrouche, and M. Anwari, "Design and optimization of a permanent magnet rotating machine for power cooling generation," Progress In Electromagnetics Research M, Vol. 20, 57-71, 2011.
doi:10.1016/S0921-4526(02)01769-6

7. Bruck, E., O. Tegus, X. W. Li, et al. "Magnetic refrigeration- towards room-temperature applications," Physica B: Condensed Matter, Vol. 327, No. 2-4, 431-437, Apr. 2003.
doi:10.1016/j.jmmm.2004.04.073

8. Huang, W. N. and C. C. Teng, "A simple magnetic refrigerator evaluation model," Journal of Magnetism and Magnetic Materials, Vol. 282, 311-316, 2004.

9. Kitanovski, A. P., W. Egolf, F. Gender, O. Sari, and C. H. Besson, "A rotary heat exchanger magnetic refrigerator," International Conference on Magnetic Refrigeration at Room Temperature, Montreux, Switzerland, 2005.
doi:10.1109/TMAG.2004.832475

10. Shir, F., E. Della Torre, and L. H. Bennett, "Modeling of magnetization and demagnetization in magnetic regenerative refrigeration," IEEE Transactions on Magnetics, Vol. 40, No. 4, 2098-2100, Jul. 2004.
doi:10.1103/PhysRevB.59.503

11. Tishin, A. M., K. A. Gschneidner, and V. K. Pecharsky, "Magnetocaloric effect and heat capacity in the phase-transition region," Physical Review B, Vol. 59, No. 1, 503-511, 1999.