Vol. 23
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-01-20
Multi-Polarized Microwave Power Imaging Algorithm for Early Breast Cancer Detection
By
Progress In Electromagnetics Research M, Vol. 23, 93-107, 2012
Abstract
A new image reconstruction algorithm for early breast cancer detection using ultra-wideband microwave signals is proposed. In this algorithm, the backscattered electric and magnetic fields are measured and combined in a novel way; the direction of power flow with respect to a given focal point is used to localize tumors. Significant improvement in signal-to-mean raito (SMR) and signal-to-clutter ratio (SCR) are achieved when driving signals consist of waves with multiple polarizations. Numerical results demonstrate nearly 5.5 dB improvement of SMR and SCR over the traditional Confocal Microwave Imaging method when a single 8 mm breast tumor is present. Breast Cancer Facts Figures 2011-2012
Citation
Wenyi Shao, and Ryan S. Adams, "Multi-Polarized Microwave Power Imaging Algorithm for Early Breast Cancer Detection," Progress In Electromagnetics Research M, Vol. 23, 93-107, 2012.
doi:10.2528/PIERM11082510
References

1., American Cancer Society,Breast Cancer Facts Figures 2011-2012, Nov. 2011. Available on www.cancer.org/Research/Cancer FactsFigures/BreastCacerFactsFigures .

2. Huynh, P. T., A. M. Jarolimek, and S. Daye, "The false-negative mammogram," Radiograph., Vol. 18, No. 5, 1137-1154, 1998.
doi:10.1056/NEJM199804163381601

3. Elmore, J. G., M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher, "Ten-year risk of false positive screening mammagrams and clinical breast examinations," New Eng. J. Med., Vol. 338, No. 16, 1089-1096, 1998.
doi:10.1109/10.730440

4. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE Trans. Biomed. Eng., Vol. 45, 1470-1479, Dec. 1998.
doi:10.1109/10.1374

5. Surowiec, A. J., S. S. Stuchly, J. R. Barr, and A. Swarup, "Dielectric properties of breast carcinoma and the surrounding tissues," IEEE Trans. Biomed. Eng., Vol. 35, 257-263, Apr. 1988.

6. Joines, W. T., Y. Zhang, C. Li, and R. L. Jirtle, "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz," Med. Phys., Vol. 21, 547-550, Apr. 1994.

7. Chaudhary, S. S., R. K. Mishra, A. Swarup, and J. M. Thomas, "Dielectric properties of normal and malignant human breast tissues at radiowave and microwave frequencies," Indian J. Biochem. Biophys., Vol. 21, 76-79, Feb. 1984.
doi:10.1088/0031-9155/52/20/002

8. Lazebnik, M., D. Popovid, L. McCartney, C. Watkins, M. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. Breslin, W. Temple, D. Mew, J. Booske, M. Okoniewski, and S. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/10/001

9. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.
doi:10.1109/8.992560

10. Cui, T. and W. Chew, "Diffraction tomographic algorithm for the detection of three-dimensional objects buried in a lossy half- space," IEEE Trans. Antennas and Propagation, Vol. 50, No. 1, 42-49, Jan. 2002.

11. Born, M. and E.Wolf, Principles of Optics, 6th edition, Pergamon Press, New York, 1980.
doi:10.1002/ima.1850030405

12. Moghaddam, M., W. C. Chew, and M. Oristaglio, "Comparison of the born iterative method and Tarantola's method for an electromagnetic time-domain inverse problem," Int. J. Imag. Sys. Tech., Vol. 3, No. 4, 318-333, 1991.
doi:10.1109/42.56334

13. Chew, W. and Y. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method," IEEE Trans. Med. Imaging, Vol. 9, No. 2, 218-225, Jun. 1990.
doi:10.1109/TMI.2008.2008959

14. Winters, D. W., J. D. Shea, P. Kosmas, B. D. van Veen, and S. C. Hagness, "Three-dimensional microwave breast imaging: Dispersive dielectric properties estimation using patient-specific basis functions," IEEE Trans. Med. Imaging, Vol. 28, No. 7, 969-981, Jul. 2009.
doi:10.1109/TBME.2002.800759

15. Fear, E., X. Li, S. C. Hagness, and M. Stunchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in 3 dimensions," IEEE Trans. Biomed. Eng., Vol. 49, No. 8, 812-822, 2002.
doi:10.1109/TBME.2008.919716

16. Lim, H. B., N. T. T. Nhung, E. Li, and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiply- and-sum image reconstruction algorithm," IEEE Trans. Biomed. Eng., Vol. 55, No. 6, 1697-1704, 2008.

17. Klemm, M., I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, "Improved delay-and-sum beamforming algorithm for breast cancer detection," Int. Journal of Ant. and Prop., Vol. 2008, 9, Article ID 761402, 2008, doi:10.1155/2008/761402..

18. Shao, W. and R. Adams, "UWB imaging with multi-polarized signals for early breast cancer detection," Proceedings of the 2010 IEEE Ant. and Prop. Society International Symposium, 1-4, 2010.

19. Shao, W., B. Zhou, and G. Wang, "UWB microwave imaging for early detection of breast cancer," Journal of Microwaves, Vol. 21, No. 3, 64-67, 2005, in Chinese..

20. Li, X. and S. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microwave and Wireless Components Lett., Vol. 11, No. 3, 130-132, The UWCEM Numerical Breast Phantoms Repository. Available at http://uwcem.ece.wisc.edu/MRIdatabase/. 2001.

21., The UWCEM Numerical Breast Phantoms Repository. Available at http://uwcem.ece.wisc.edu/MRIdatabase/..

22. Yee, K., "Numerical solution of initial boundary value problems involving Maxwell's equation in isotropic media," IEEE Trans. Antennas and Propagation, Vol. 14, No. 14, 302-307, 1966.

23. Liao, Z. P., H. L. Wong, B. P. Yang, and Y. F. Yuan, "A transmitting boundary for transient wave analysis," Scientia Sinica, Vol. 27, No. 10, 1063-1076, 1984.

24., University of Texas MD Anderson Cancer Center, "Breast cancer screening: Increased risk," available on http://www.mdanderson.org..

25. Flores-Tapia, D., G. Thomas, and S. Pistorius, "Skin surface removal on breast microwave imagery usng wavelet multiscale products," Proceedings of the 5th Medical Imaging: Physiology, Function and Structure from Medical Images, 2006.