Vol. 19
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-08-02
Microwave Absorbing Characteristics of Asphalt Mixes with Carbonyl Iron Powder
By
Progress In Electromagnetics Research M, Vol. 19, 197-208, 2011
Abstract
Power microwave was adopted to heat asphalt mixes with carbonyl iron powder (CIP) by its microwave absorbing characteristics. The Arch reflectivity system was employed for reflectivity tests in the frequency range of 2.0~4.0 GHz, and road properties of the asphalt mixes with different heating techniques were studied. The results indicate that 30 mm thickness of the asphalt mixes with the ratio of CIP absorber to asphalt 0.1 : 1.5, can effectively absorb microwave with a -19.1 dB absorbing peak at 2.45 GHz frequency. Microwave heating rate for asphalt mixes with CIP is 16 times higher than that for ordinary asphalt mixes. Microwave heating can enhance road properties of the asphalt mixes, such as Marshall stability, flow value, dynamic stability and splitting strength at low temperature to a certain extant when the ratio of CIP absorber to asphalt is from 0.1 : 1.5 to 0.3 : 1.5.
Citation
Zhenjun Wang, Peng Zhao, Tao Ai, Guanying Yang, and Qiong Wang, "Microwave Absorbing Characteristics of Asphalt Mixes with Carbonyl Iron Powder," Progress In Electromagnetics Research M, Vol. 19, 197-208, 2011.
doi:10.2528/PIERM11052312
References

1. Robert, K.-H., B. Schmidt-Bleek, J. A. De Larderel, G. Basile, J. L. Jansen, R. Kuehr, P. P. Thomas, M. Suzuki, P. Hawken, and M. Wackernagel, "Strategic sustainable development-selection, design and synergistic applied tools," Journal of Cleaner Production, Vol. 10, No. 3, 363-366, 2002.
doi:10.1016/S0959-6526(01)00061-0

2. Zheng, Y. X., H. G. Kang, Y. C. Cai, and Y. M. Zhang, "Effects of temperature on the dynamic properties of asphalt mixtures," Journal Wuhan University of Technology, Materials Science Edition, Vol. 25, No. 3, 534-537,2010.

3. Leonelli, C. and T. J. Mason, "Microwave and ultrasonic processing: Now a realistic option for industry," Chemical Engineering and Processing: Process Intensification, Vol. 49, No. 9, 885-900, 2010.
doi:10.1016/j.cep.2010.05.006

4. Dave, E. V., G. H. Paulino, and W. G. Buttlar, "Asphalt pavement aging and temperature dependent properties through a functionally graded viscoelastic model, Part-I: Development, implementation and verification," Materials Science Forum, Vol. 631, No. 1, 47-52, 2010.

5. Ramanayaka, A. N., R. G. Mani, and W. Wegscheider, "Microwave-induced electron heating in the regime of radiation-induced magneto resistance oscillations," Physical Review B, Vol. 83, No. 16, 16530-16533, 2011.
doi:10.1103/PhysRevB.83.165303

6. Li, Y. B. and N. Soheil, "Evaluation of aging of hot-mix asphalt using wave propagation techniques," Proceedings of the Symposium on Engineering Properties of Asphalt Mixtures and the Relationship to Their Performance, Vol. 1265, 166-179, Phoenix, AZ, USA, 1995.

7. Barnes, C. L. and J.-F. Trottier, "Evaluating laboratory-induced asphalt concrete moisture damage using surface waves," International Journal of Pavement Engineering, Vol. 11, No. 6, 489-497, 2010.
doi:10.1080/10298430903578929

8. Du Tertre, A., G. Cascante, and S. L. Tighe, "Combining portable falling weight deflectometer and surface wave measurements for evaluation of longitudinal joints in asphalt pavements," Transportation Research Record, No. 2152, 28-36, 2010.
doi:10.3141/2152-04

9. Gregor, T., T. K. Goran, K. Franci, and B. B. Violeta, "Possibilities of using the ultrasonic wave transmission method to estimate initial setting time of cement paste," Cement and Concrete Research, Vol. 38, No. 11, 1336-1342, 2008.
doi:10.1016/j.cemconres.2008.08.003

10. Natt, M., K. Pornthip, R. Phadungsak, C. Burachat, and K. A. Dinesh, "Microwave-assisted heating of cementitious materials: Relative dielectric properties, mechanical property, and experimental and numerical heat transfer characteristics," International Communications in Heat and Mass Transfer, Vol. 37, No. 8, 1096-1105, 2010.
doi:10.1016/j.icheatmasstransfer.2010.06.029

11. Sugimoto, S. M. T., D. Book, T. Kagotani, K. Inomata, M. Homma, H. Ota, Y. Houjou, and R. Sato, "GHz microwave absorption of a fine α-Fe structure produced by the disproportionation of Sm2Fe17 in hydrogen," Journal of Alloys and Compounds, Vol. 330, No. 1, 301-306, 2002.
doi:10.1016/S0925-8388(01)01504-3

12. Liu, L. D., Y. P. Duan, L. X. Ma, S. H. Liu, and Z. Yu, "Microwave absorption properties of a wave-absorbing coating employing carbonyl-iron powder and carbon black," Applied Surface Science, Vol. 257, No. 3, 842-846, 2010.
doi:10.1016/j.apsusc.2010.07.078

13. Guan, H. T., S. H. Liu, Y. P. Duan, and Y. B. Zhao, "Investigation of the electromagnetic characteristics of cement based composites filled with EPS," Cement and Concrete Composites, Vol. 29, No. 1, 49-54, 2007.
doi:10.1016/j.cemconcomp.2006.08.001

14. Wang, Z. J., K. Z. Li, C. Wang, and J. Xie, "Wave-absorbing properties of carbonyl iron powder/carbon fiber reinforced cement-based composites," Journal of the Chinese Ceramic Society, Vol. 39, No. 1, 69-74, 2011.

15. He, S., "Test of radar wave-absorbing materials," Materials Engineering, No. 6, 25-28, 2003.

16. Zhu, S. Q. and J. F. Shi, "Structural design and experimental research of microwave radiation heater for asphalt pavements," Journal of Southeast University, (English Edition), Vol. 25, No. 1, 680-73, 2009.

17. Liu, L. D., Y. P. Duan, S. H. Liu, L. Y. Chen, and J. B. Guo, "Microwave absorption properties of one thin sheet employing carbonyl|Iron powder and chlorinated polyethylene," Journal of Magnetism and Magnetic Materials, Vol. 322, No. 13, 1736-1740, 2010.
doi:10.1016/j.jmmm.2009.12.017

18. Ayappa, K. G., H. T. Davis, S. A. Barringer, and E. A. Davis, "Resonant microwave power absorption in slabs and cylinders," Fluid Mechanics and Transport Phenomena Journal, Vol. 43, No. 3, 615-624, 1997.

19. Vallee, S. J. and W. C. Conner, "Microwaves and sorption on oxides: A surface temperature investigation," Journal of Physics Chemistry B, Vol. 110, No. 31, 15459-15470, 2006.
doi:10.1021/jp061679h

20. Stern, C. H., "A transient heat transfer model for selective microwave heating of multilayer material system," Journal of Microwave Power Electromagnetic Energy, Vol. 33, No. 4, 207-215, 1998.