Vol. 13
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-07-29
Leaky-Wave Regimes on MEMS-Loaded Transmission Lines for mm -Wave Applications
By
Progress In Electromagnetics Research M, Vol. 13, 157-171, 2010
Abstract
This paper presents study of controllable leaky wave modes in various planar transmission lines operating at millimetre wavelengths. Leaky wave regime is achieved by exploitation of periodic inclusions. The main goal is to obtain the scanning of the radiation angle from forward to backward direction and rather broad range of scanning angles at a given operation frequency corresponding to the mm-wave range. For this purpose we suggest to use MEMS capacitors combined with shunt strap inductors, probably grounded. This design solution allows one to significantly reduce the losses in the loaded line compared to known scanning leaky-wave antennas based on varactors or on magnetized ferrites. The design of the unit cell is done using global optimization method, and the dispersion is investigated analytically. After analytical modeling and optimization, full wave analysis is done using Ansoft HFSS v.11 environment. After the leaky wave regimes are verified, an example of a leaky-wave antenna is introduced in order to confirm possibility of beam scanning.
Citation
Tomas Zvolensky, Dmitry Chicherin, Antti V. Räisänen, and Constantin R. Simovski, "Leaky-Wave Regimes on MEMS-Loaded Transmission Lines for mm -Wave Applications," Progress In Electromagnetics Research M, Vol. 13, 157-171, 2010.
doi:10.2528/PIERM10050605
References

1. Bagley, Q., B. Wu, and L. Tsang, "Electromagnetic fields of hertzian dipoles in layered negative refractive index materials," IEEE Antennas Wirel. Propag. Lett., Vol. 7, 749-752, 2008.
doi:10.1109/LAWP.2008.2008031

2. Grbic, A. and G. V. Eleftheriades, "Leaky CPW-based slot antenna arrays for millimeter-wave applications," IEEE Trans. Antennas Propag., Vol. 50, No. 11, 1494-1504, 2002.
doi:10.1109/TAP.2002.804259

3. Hanson, G. W. and A. B. Yakovlev, "Leaky wave excitation on three-dimensional printed interconnects," IEEE MTT-S Digest, Vol. 2, 499-502, 2004.

4. Diamantis, S. G., G. A. Kyriacou, A. A. Mavrides, and J. N. Sahalos, "Investigation of eigen-backward and leaky-waves modes of an axially magnetized lossy cylindrical ferrite substrate," XXVIIth General Assembly of the International Union of Radio Science, No. 1270, 17-24, Maastricht, Aug. 2002.

5. Subramanyam, G., F. Ahamed, R. Biggers, R. Neidhard, E. Nykiel, J. Ebel, R. Strawser, K. Stamper, and M. Calcatera, "RF performance evaluation of ferroelectric varactor shunt switches," Microwave Opt. Technol. Lett., Vol. 47, No. 4, 370-374, 2005.
doi:10.1002/mop.21172

6. Gil, I., J. Bonache, J. Garca-Garca, F. Martn, and R. Marques, "Tunable split ring resonators for reconfigurable metamaterial transmission lines," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 6, 2665-2674, 2006.
doi:10.1109/TMTT.2006.872949

7. Ojefors, E., S. Cheng, K. From, I. Skarin, P. Hallbjorner, and A. Rydberg, "Electrically steerable single-layer microstrip traveling wave antenna with varactor diode based phase shifters," IEEE Trans. Antennas Propag., Vol. 55, No. 9, 2451-2460, 2007.
doi:10.1109/TAP.2007.904104

8. Piazza, D., M. D'Amico, and K. R. Dandekar, "Two port configurable CRLH leaky wave antenna with improved impedance matching and beam tunning," Proc. of the European Conference on Antennas and Propagation, 2046-2049, Berlin, March 23-27, 2009.

9. Rebeiz, G. M., RF MEMS Theory, Design, and Technology, John Wiley & Sons, Inc. Publication, 2003.

10. Simovski, C., "Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices," Metamaterials, Vol. 1, No. 2, 62-80, 2007.
doi:10.1016/j.metmat.2007.09.002

11. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Trans. Antennas Propag., Vol. 52, No. 2, 397-407, 2004.
doi:10.1109/TAP.2004.823969

12. Caloz, C., A. Lai, and T. Itoh, "The challenge of homogenization in metamaterials," New J. Phys., Vol. 7, 167-182, 2005.
doi:10.1088/1367-2630/7/1/167

13. Caloz, C. and T. Itoh, Electromagnetic Metamaterials Transmission Line Theory and Microwave Applications, John Wiley & Sons, Inc. Publication, 2006.
doi:10.1002/0471754323

14. Varadan, V. K., K. J. Vinoy, and K. A. Jose, "RF MEMS and Their Applications," John Wiley & Sons Ltd, 2002.

15. Chicherin, D., M. Sterner, J. Oberhammer, S. Dudorov, J. Aberg, and A. V. Raisanen, "Analog type millimeter wave phase shifters based on MEMS tunable high-impedance surface in rectangular metal waveguide ," IEEE MTT-S Digest, 61-64, May 23-28, 2010.

16. Pozar, D. M., "Microwave Engineering," John Wiley & Sons, Inc. Publication, 1998.