Vol. 11
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-02-09
Super-Lattice Structure Photonic Crystal Fiber
By
Progress In Electromagnetics Research M, Vol. 11, 53-64, 2010
Abstract
We propose a kind of novel photonic crystal fibers (PCFs) based on a super-lattice structure. Uniform air holes are used to form the basic cell structure. Using the uniform air holes in the PCF has the advantage of minimizing the structural distortion during fabrication while forming a complex-structure cross section. We propose an effective-circular-hole PCF with similar properties of the conventional circular-hole PCF to address the concept of the super-lattice structure PCF. An effective-elliptical-hole PCF based on a super-lattice structure is proposed and investigated, which has the similar birefringent and confinement loss characteristics as the previously reported elliptical-hole PCF. Other PCFs based on super-lattice structures such as the effective-triangular-hole PCF and effective-rectangular-hole PCF can also be achieved by using the design method proposed in this paper.
Citation
Daru Chen, Ming-Leung Vincent Tse, and Hwa-Yaw Tam, "Super-Lattice Structure Photonic Crystal Fiber," Progress In Electromagnetics Research M, Vol. 11, 53-64, 2010.
doi:10.2528/PIERM09120701
References

1. Birks, T. A., J. C. Knight, and P. S. J. Russel, "Endlessly single-mode photonic crystal fiber," Opt. Lett., Vol. 22, 961-963, 1997.
doi:10.1364/OL.22.000961

2. Knight, J. C. and P. S. J. Russell, "Photonic crystal fibers: New way to guide light," Science, Vol. 296, 276-277, 2002.
doi:10.1126/science.1070033

3. Knight, J. C., "Photonic crystal fibers," Nature, Vol. 424, 847-851, 2003.
doi:10.1038/nature01940

4. Ortigosa-Blanch, A., J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russel, "Highly birefringent photonic crystal fibers," Opt. Lett., Vol. 25, 1325-1327, 2000.
doi:10.1364/OL.25.001325

5. Ferrando, A., E. Silvestre, J. J. Miret, and P. Andres, "Nearly zero ultraflattened dispersion in photonic crystal fibers," Opt. Lett., Vol. 25, 790-792, 2000.
doi:10.1364/OL.25.000790

6. Knight, J. C. and D. V. Skryabin, "Nonlinear waveguide optics and photonic crystal fibers," Opt. Express, Vol. 15, 15365-15376, 2007.
doi:10.1364/OE.15.015365

7. Fevrier, S., P. Viale, F, Gerome, P. Leproux, P. Roy, J.-M. Blondy, B. Dussardier, and G. Monnom, "Very large effective area singlemode photonic bandgap fibre," Eletron. Lett., Vol. 39, 1240-1242, 2003.
doi:10.1049/el:20030841

8. Dobb, H., K. Kalli, and D. J. Webb, "Temperature-insensitive long period grating sensors in photonic crystal fibre," Eletron. Lett., Vol. 40, 657-658, 2004.
doi:10.1049/el:20040433

9. Dong, X. and H. Y. Tam, "Temperature-insensitive strain sensor Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based on Sagnac interferometer," Appl. Phys. Lett., Vol. 90, 151113, 2007.
doi:10.1063/1.2722058

10. Wadsworth, W. J., J. C. Knight, W. H. Reewes, P. S. J. Russell, and J. Arriaga, "Yb3+-doped photonic crystal fibre laser," Eletron. Lett., Vol. 36, 1452-1253, 2000.
doi:10.1049/el:20000942

11. Liu, X., X. Zhou, X. Tang, J. Ng, J. Hao, T. Chai, E. Leong, and C. Lu, "Swithable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg grating and photonic crystal fiber," IEEE Photon. Technol. Lett., Vol. 17, 1626-1628, 2005.
doi:10.1109/LPT.2005.851024

12. Chen, D., "Stable multi-wavelength erbium-doped fiber laser based on photonic crystal fiber Sagnac loop filter," Laser Phys. Lett., Vol. 4, 437-439, 2007.
doi:10.1002/lapl.200710003

13. Broderick, N. G. R., T. M. Monro, P. J. Bennett, and D. J. Richardson, "Nonlinearity in holey optical fibers: Measurement and future opportunities," Opt. Lett., Vol. 24, 1395-1397, 1999.
doi:10.1364/OL.24.001395

14. Dudley, J. M. and J. R. Taylor, "Ten years of nonlinear optics in photonic crystal fibre," Nature Photonics, Vol. 3, 85-90, 2009.
doi:10.1038/nphoton.2008.285

15. Saitoh, K. and M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett., Vol. 15, 1384-1386, 2003.
doi:10.1109/LPT.2003.818215

16. Ju, J., W. Jin, and M. S. Demokan, "Design of single-polarization single-mode photonic crystal fiber at 1.30 μm and 1.55μm," J. Lightw. Technol., Vol. 24, 825-830, 2006.
doi:10.1109/JLT.2005.861942

17. Chen, D. and L. Shen, "Highly birefringent elliptical-hole photonic crystal fibers with double defect," J. Lightw. Technol., Vol. 25, 2700-2705, 2007.
doi:10.1109/JLT.2007.902114

18. Hu, D. J. J., P. Shum, C. Lu, X. Yu, G. Wang, and G. Ren, "Holey ¯ber design for single-polarization single-mode guidance," Appl. Opt., Vol. 48, 4038-4043, 2009.
doi:10.1364/AO.48.004038

19. Saitoh, K., M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion," Opt. Express,, Vol. 11, 843-852, 2003.
doi:10.1364/OE.11.000843

20. Poletti, F., V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, "Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers," Opt. Express, Vol. 13, 3728-3736, 2005.
doi:10.1364/OPEX.13.003728

21. Steel, M. J. and R. M. Osgood, "Elliptical-hole photonic crystal fibers," Opt. Lett., Vol. 26, 229-231, 2001.
doi:10.1364/OL.26.000229

22. Chen, D. and L. Shen, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss," IEEE Photon. Technol. Lett., Vol. 19, 185-187, 2007.
doi:10.1109/LPT.2006.890040

23. Suzuki, K., H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, "Optical properties of a low-loss polarization-maintaining photonic crystal fiber," Opt. Express, Vol. 9, 676-680, 2001.
doi:10.1364/OE.9.000676

24. Wu, J.-J., D. Chen, K.-L. Liao, T.-J. Yang, and W. L. Ouyang, "The optical properties of Bragg fiber with a fiber core of 2-dimension elliptical-hole photonic crystal structure," Progress In Electromagnetics Research Letters, Vol. 10, 87-95, 2009.
doi:10.2528/PIERL09061804

25. Wang, Z., G. Ren, S. Lou, and S. Jian, "Supercell lattice method for photonic crystal fibers," Opt. Express, Vol. 11, 980-991, 2003.
doi:10.1364/OE.11.000980

26. Saitoh, K. and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron., Vol. 38, 927-933, 2002.
doi:10.1109/JQE.2002.1017609

27. Yang, R., W. Xue, T. Huang, and G. Zhou, "Research on the e®ects of air hole shape on the properties of microstructured optical fibers," Optical Engineering, Vol. 43, 2701-2706, 2004.
doi:10.1117/1.1795260