Vol. 10
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-01-05
Unit Length Parameters, Transition Sharpness and Level of Radiation in Defected Microstrip Structure (DMS) and Defected Ground Structure (DGS) Interconnections
By
Progress In Electromagnetics Research M, Vol. 10, 93-102, 2009
Abstract
In this paper, some important concepts about the defected microstrip structure (DMS) and defected ground structure (DGS) interconnections are introduced. In concept number one, three different types of interconnections are analyzed for determining the unit length and frequency dependent characteristics, based on the perturbed direct and return current paths and electromagnetic (EM) simulations. Therefore, the proposed interconnections with nonuniform circuit and ground planes (DMS and DGS) can be modeled using the uniform circuit and ground planes with frequency dependent unit length parameters. This concept can be used for designing the microwave circuits loaded with DMS or DGS. Results show that the unit length parameters are the same at high frequencies but different at low frequencies due to the different current distributions and consequently different geometry shapes. In concept number two, the level of radiation in these interconnections due to the area of defects is determined and compared. The very large radiation, due to large etched area on ground plane, is a deficiency of DGS interconnections. Using the DMS version, the harmful radiation can be decreased effectively. In concept number three, the level of transition from passband to stopband is calculated and compared. Sharper transition can better suppress the band spurious signals. Finally, all performances are tabulated and compared.
Citation
Morteza Kazerooni, Ahmad Cheldavi, and Mohamad Khalil, "Unit Length Parameters, Transition Sharpness and Level of Radiation in Defected Microstrip Structure (DMS) and Defected Ground Structure (DGS) Interconnections," Progress In Electromagnetics Research M, Vol. 10, 93-102, 2009.
doi:10.2528/PIERM09101907
References

1. Kim, C. S., J. S. Lim, J. S. Park, D. Ahn, and S. W. Nam, "A 10 dB branch line coupler using defected ground structure," European Microwave Conference Digest, 68-71, 2000.

2. Yun, J. S., G. Y. Kim, J. S. Park, D. Ahn, K. Y. Kang, and J. B. Lim, "A design of the novel coupled line bandpass filter using defected ground structure," IEEE MTT-S Digest, 327-330, 2000.

3. Lim, J. S., H. S. Kim, J. S. Park, D. Ahn, and S. W. Nam, "A power amplifier with efficiency improved using defected ground structure," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 4, 170-172, Apr. 2001.
doi:10.1109/7260.916333

4. Kazerooni, M., G. Rezai Rad, and A. Cheldavi, "Behavior study of simultaneously defected microstrip and ground structure (DMGS) in planar circuits," PIERS Proceedings, 895-900, Beijing, China, Mar. 23-27, 2009.

5. Kazerooni, M., N. P. Gandji, A. Cheldavi, and M. Kamarei, "A new microwave bandstop filter using defected microstrip structure (DMS)," PIERS Proceedings, 697-700, Moscow, Russia, Aug. 18-21,2009.

6. Kazerooni, M., A. Cheldavi, and M. Kamarei, "A new bandstop cascaded defected microstrip structure (CDMS) with 10 GHz symmetrical bandwidth," PIERS Proceedings, 647-651, Moscow, Russia, Aug. 18-21, 2009.

7. Kazerooni, M., A. Cheldavi, and M. Kamarei, "A novel bandpass defected microstrip structure (DMS) filter for planar circuits," PIERS Proceedings, 1214-1217, Moscow, Russia, Aug. 18-21,2009.

8. Kazerooni, M., A. Cheldavi, and M. Kamarei, "Comparing the performance of defected microstrip structures (DMS) and defected ground structures (DGS) in microstrip miniature circuits ," 17th ICEE, IUST, 2009.