Vol. 9
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-09-19
Enlarged Photonic Band Gaps in One-Dimensional Magnetic Star Wave Guide Structure
By
Progress In Electromagnetics Research M, Vol. 9, 21-34, 2009
Abstract
Photonic band structure and reflection properties of one-dimensional magnetic star wave-guide (MSWG) structure composed of a backbone (or substrate) waveguide along which a finite side branches grafted periodically have been investigated. The dispersion relation and hence the photonic band gaps (PBGs) of the magnetic SWG structure have been obtained by applying the Interface Response Theory (IRT). Investigation of dispersion characteristics shows that the existence of band gaps in magnetic SWG structures does not require the contrast in the wave impedance of the constituent materials, which is unlike the usual magnetic photonic crystal structure, where there must be the contrast in the wave impedance for the existence of the band gaps. Moreover, magnetic SWG structures have wider reflection bands in comparison to normal magnetic photonic crystal (MPC) structure for the same contrast in the wave impedance. Analysis shows that the width of forbidden bands for MSWG structure changes with the change in permittivity and permeability of the backbone, and side branches materials even the ratio of wave impedance is the same, but it remains the same in case of MPC structure. In addition to this, we have studied the effects of variation of number of grafted branches and substrates i.e., number of nodes on the reflection bands of magnetic SWG structure.
Citation
Sanjeev Srivastava, and Sant Ojha, "Enlarged Photonic Band Gaps in One-Dimensional Magnetic Star Wave Guide Structure," Progress In Electromagnetics Research M, Vol. 9, 21-34, 2009.
doi:10.2528/PIERM09081501
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid state physics and electronics,", Vol. 58, 2059-2062, 1987.
doi:10.1038/386143a0

2. Joannopoulos, J. D., P. Villeneuve, and S. Fan, "Photonic crystals: Putting a new twist on light," Nature, Vol. 386, 143, London, 1997.

3. Yuan, K., X. Zheng, C.-L. Li, and W. L. She, "Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index," Phys. Rev. E, Vol. 71, No. 066604, 1-5, 2005.
doi:10.1002/mop.10518

4. Srivastava, S. K. and S. P. Ojha, "Operating characteristics of an optical ¯lter using metallic photonic band gap materials," Microwave and Opt. Technol. Lett., Vol. 35, 68-71, 2002.

5. Wang, L.-G., H. Chen, and S. Y. Zhu, "Omnidirectional gap and defect mode of one-dimnesional photonic crystals with single-negative materials," Phys. Rev. B, Vol. 70, No. 245102, 1-6, 2004.
doi:10.1063/1.1637452

6. Jiang, H., H. Chen, H. Li, and Y. Zhang, "Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative index materials," Appl. Phys. Lett., Vol. 83, 5386-5388, 2003.
doi:10.2528/PIER07010501

7. Singh, S. K., J. P. Pandey, K. B. Thapa, and S. P. Ojha, "Structural parameters in the formation of omnidirectional high reflectors," Progress In Electromagnetics Research, Vol. 70, 53-78, 2007.
doi:10.2528/PIER06061602

8. Srivastava, S. K. and S. P. Ojha, "Enhancement of omnidirectional re°ection bands in one-dimensional photonic crystal structures with left-handed materials," Progress In Electromagnetics Research, Vol. 68, 91-111, 2007.
doi:10.2528/PIERB08031101

9. Ghorbaninejad, H. and M. Khalaj-Amirhosseini, "Compact bandpass filters utilizing dielectric filled waveguides," Progress In Electromagnetics Research B, Vol. 7, 105-115, 2008.
doi:10.2528/PIER06102502

10. Khalaj-Amirhosseini, M., "Microwave filters using waveguides filled by multi-layer dielectric," Progress In Electromagnetics Research, Vol. 66, 105-110, 2006.

11. Bahrami, H., M. Hakkak, and A. Pirhadi, "Analysis and design of highly compact bandpass waveguide filter using complementary split ring resonators (CSRR)," Progress In Electromagnetics Research, Vol. 80, 107-122, 2008.
doi:10.1103/PhysRevB.57.R9388

12. Dobrzynski, L., A. Akjouj, A. Djafari-Rouhani, J. O. Vasseur, and J. Zemmouri, "Giant gaps in photonic band structures," Phys. Rev. B, Vol. 57, R9388-9391, 1998.
doi:10.1103/PhysRevB.55.10434

13. Vasseur, J. O., P. A. Deymier, L. Dobrzynski, B. Djafari-Rouhani, and A. Akjouj, "Absolute band gaps and electromagnetictransmission in quasi-one-dimensional comb structure," Phys. Rev. B, Vol. 55, 10434-10442, 1997.
doi:10.1088/0953-8984/15/10/308

14. Mir, A., A. Akjouj, J. O. Vasseur, B. Djafari-Rouhani, N. Fettouhi, E. Boudouti, L. Dobrzynski, and J. Zemmouri, "Observation of large photonic band gaps and defect modes in onedimensional networked waveguides," J. Phys. Condens. Matter, Vol. 15, 1593-1598, 2003.
doi:10.2528/PIER06061602

15. Srivastava, S. K. and S. P. Ojha, "Photonic band gaps in one-dimensional metallic star waveguide structure," Progress In Electromagnetics Research, Vol. 68, 91-111, 2007.
doi:10.1016/j.physleta.2009.01.029

16. Yin, C. P. and H. Z. Wang, "Narrow transmission bands of quasi-1D comblike photonic waveguides containing negative index materials," Phys. Lett. A, Vol. 373, 1093-1096, 2009.
doi:10.1016/j.optcom.2008.03.042

17. Zhang, L., Z. Wang, L. Chen, H. Li, and Y. Zhang, "Experimental study of quasi-one-dimensional comb-like photonic crystals containing left-handed material," Opt. Comm., Vol. 281, 3681-3685, 2008.
doi:10.1103/PhysRevB.56.959

18. Sigalas, M. M., M., C. M. Soukolis, and K. M. Ho, "Effect of magnetic permeability on photonic band gaps," Phys. Rev. B, Vol. 56, 959-962, 1997.
doi:10.1063/1.1699490

19. Drikis, I., S. Y. Yang, H. E. Horng, C. Y. Hong, and H. C. Yang, "Modified frequency-domain method for simulating the electromagnetic properties in periodic magneto active system," J. Appl. Phys., Vol. 95, No. 10, 5876-5881, 2004.

20. Kee, C.-S., J.-E. Kim, H. Y. Park, and H. Lim, "Roles of wave impedance and refractive index in photonic crystals with magnetic and dielectric properties," IEEE Trans. Microwave Theo. Tech., Vol. 47, 2148-2150, 1999.
doi:10.2528/PIER05061701

21. Dmitriev, V., "2D magnetic photonic crystals with square lattice-group theoretical standpoint," Progress In Electromagnetics Research, Vol. 58, 71-100, 2006.
doi:10.1088/1464-4258/6/12/006

22. Kee, C.-S., J.-E. Kim, and H. Y. Park, "Omnidirectional reflection bands of one-dimensional magnetic photonic crystals," J. Opt. A: Pure Appl. Opt., Vol. 6, 1086-1088, 2004.

23. Yeh, P., Optical Waves in Layered Media, John Wiley and Sons, New York, 1988.