Vol. 7
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-06-04
A Simple Numerical Method to Compute the Signal-to-Noise Ratio of a Magnetic Resonance Imaging Surface Coil
By
Progress In Electromagnetics Research M, Vol. 7, 109-122, 2009
Abstract
The quality of a magnetic resonance image can be reliably measured by the signal-to-noise ratio. This widely accepted parameter is a function of the magnetic field generated by the coil and the electric field produced by the sample to be imaged. A simple numerical method is proposed to calculate the coil signal-to-noise ratio of a circular-shaped coil and a spherical phantom. The phantom is composed of two-concentric sphere simulating a brain-skull model. The electromagnetic fields produced were then numerically computed by solving Maxwell's equations with the finite element method implemented in a commercial software tool. The electric and magnetic fields were used to numerically determine the signal-to-noise ratio using the quasi-static approach. The numerical results demonstrated that this simple method is able to calcualte the signal-to-noise ratio of surface coils with simple coil geometries involving a simulated phantom.
Citation
Rafael Rojas Rodriguez, and Alfredo O. Rodriguez Gonzalez, "A Simple Numerical Method to Compute the Signal-to-Noise Ratio of a Magnetic Resonance Imaging Surface Coil," Progress In Electromagnetics Research M, Vol. 7, 109-122, 2009.
doi:10.2528/PIERM09040604
References

1. Hoult, D. I. and R. E. Richards, "The signal-to-noise ratio of the nuclear magnetic resonance experiment," J. Magn. Reson., Vol. 24, 71-85, 1976.

2. Hoult, D. I., "Sensitivity and power deposition in a high-field maging experiment," J. Magn. Reson. Imaging, Vol. 12, 46-67, 2000.
doi:10.1002/1522-2586(200007)12:1<46::AID-JMRI6>3.0.CO;2-D

3. Ocegueda, K. and A. O. Rodriguez, "A simple method to calculate the signal-to-noise ratio of a circular shaped coil for MRI," Con. Magn. Reson., Vol. 28A, 422-429, Part A, 2006.
doi:10.1002/cmr.a.20066

4. Jin, J., Electromagnetic Analysis and Design, CRC Press, Boca Raton, 1985.

5. Li, B. K., F. Liu, E. Weber, and S. Crozier, "Hybrid numerical techniques for the modelling of radiofrequency coils in MRI," NMR Biom, in press, 2009.

6. Hand, J. W., "Modelling the interaction of electromagnetic fields (10 MHz{10 GHz) with the human body: Methods and applications," Phys. Med. Biol., Vol. 53, 243-286, 2008.
doi:10.1088/0031-9155/53/16/R01

7. Rojas, R. and A. O. Rodriguez, "Finite-element electromagnetic simulation of a volume resonator coil for MR neuroimaging," 27th IEEE EMBS Conf., 1659-1662, 2005.

8. Rojas, R. and A. O. Rodriguez, "Numerical study of the optimal geometry of MRI surface coils," 29th IEEE EMBS Conf., 3890-3893, 2007.

9. FEMLAB Reference Manual, 2 Ed., COMSOL Multiphysics, Burlington, MA, USA, 2005.

10. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003

11. Fenner, R. T., Finite Element Methods for Engineers, 38, The MacMillan Press LTD, London, 1975.