Vol. 106
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-09-16
Design of Cylindrical Holographic Impedance Metasurface for Near-Field Focusing
By
Progress In Electromagnetics Research Letters, Vol. 106, 129-134, 2022
Abstract
In this paper, a design method for near-field focusing cylindrical holographic impedance metasurfaces is proposed. Firstly, based on the design theory of planar holographic impedance metasurface, we deduce the design formula for cylindrical holographic impedance metasurface by using the method of major axis matching. Then the feasibility of theoretical analysis is verified by simulation and measurement. The results show that the design method can effectively realize the near-field focusing, which can provide a reference for the application of conformal devices for microwave hyperthermia and energy harvesting.
Citation
Heng Wang, Shixing Yu, and Na Kou, "Design of Cylindrical Holographic Impedance Metasurface for Near-Field Focusing," Progress In Electromagnetics Research Letters, Vol. 106, 129-134, 2022.
doi:10.2528/PIERL22062204
References

1. Buffi, A., P. Nepa, and G. Manara, "Design criteria for near-field-focused planar arrays," IEEE Antennas Propag. Mag., Vol. 54, No. 1, 40-50, 2012.
doi:10.1109/MAP.2012.6202511

2. Karimkashi, S. and A. A. Kishk, "Focused microstrip array antenna using a Dolph-Chebyshev near-field design," IEEE Trans. Antennas Propag., Vol. 57, No. 12, 3813-3820, 2009.
doi:10.1109/TAP.2009.2033435

3. Nguyen, P. T., A. M. Abbosh, and S. Crozier, "3-D focused microwave hyperthermia for breast cancer treatment with experimental validation," IEEE Trans. Antennas Propag., Vol. 62, No. 7, 3489-3500, 2017.
doi:10.1109/TAP.2017.2700164

4. Li, P.-F., S.-W. Qu, and S. Yang, "Two-dimensional imaging based on near-field focused array antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 8, No. 2, 274-278, 2018.
doi:10.1109/LAWP.2018.2888853

5. Li, L., et al. "Progress, challenges, and perspective on metasurfaces for ambient radio frequency energy harvesting," Appl. Phys. Lett., Vol. 116, No. 6, 060501, 2020.
doi:10.1063/1.5140966

6. Reid, D. R. and G. S. Smith, "A comparison of the focusing properties of a Fresnel zone plate with a doubly-hyperbolic lens for application in a free-space, focused-beam measurement system," IEEE Trans. Antennas Propag., Vol. 57, No. 2, 499-507, 2009.
doi:10.1109/TAP.2008.2011392

7. Karimkashi, S. and A. A. Kishk, "Focusing properties of Fresnel zone plate lens antennas in the near-field region," IEEE Trans. Antennas Propag., Vol. 59, No. 5, 1481-1487, 2011.
doi:10.1109/TAP.2011.2123069

8. You, B., Y. Liu, J. Zhou, and H. Chou, "Numerical synthesis of dualband reflectarray antenna for optimum near-field radiation," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 760-762, 2012.

9. Plaza, E. G., et al. "An ultrathin 2-bit near-field transmitarray lens," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 1784-1787, 2017.

10. Li, Y., et al. "Cylindrical conformal array antenna for near field focusing," Int. J. RF Microw. Comput.-Aid. Eng., Vol. 32, No. 6, e23135, 2022.
doi:10.1002/mmce.23135

11. He, Q., S. L. Sun, S. Y. Xiao, et al. "Manipulating electromagnetic waves with metamaterials: Concept and microwave realizations," Chin. Phys. B, Vol. 23, No. 4, 047808, 2014.
doi:10.1088/1674-1056/23/4/047808

12. Holloway, C. L., E. F. Kuester, and D. Novotny, "Waveguides composed of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials," IEEE Antennas Wirel. Propag. Lett., Vol. 8, 525-529, 2009.
doi:10.1109/LAWP.2009.2018123

13. Yu, S., et al. "Design of dual-polarized reflectarray for near-field shaped focusing," IEEE Antennas Wirel. Propag. Lett., Vol. 20, No. 5, 803-807, 2021.
doi:10.1109/LAWP.2021.3063848

14. Huang, H. and J. Zhang, "Multifunctional near field focusing transmission metasurface based on polarization sensitivity," Microw. Opt. Technol. Lett., Vol. 63, No. 7, 1868-1874, 2021.
doi:10.1002/mop.32858

15. Pandi, S., C. A. Balanis, and C. R. Birtcher, "Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization," IEEE Trans. Antennas Propag., Vol. 63, No. 7, 3016-3024, 2015.
doi:10.1109/TAP.2015.2426832

16. Fong, B. H., et al. "Scalar and tensor holographic artificial impedance surfaces," IEEE Trans. Antennas Propag., Vol. 58, No. 10, 3212-3221, 2010.
doi:10.1109/TAP.2010.2055812

17. Pandi, S., C. A. Balanis, and C. R. Birtcher, "Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 1403-1413, 2013.