Vol. 106
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-09-13
Parameters of the Probability Density Function of Fluctuations of the Apparent Radiation Center from the Helicopter Propeller Hub
By
Progress In Electromagnetics Research Letters, Vol. 106, 103-110, 2022
Abstract
The properties of the angular glint of radar reflections from the propeller hub are considered. Analytical expressions were obtained based on a known multipoint geometric model of the propeller hub to calculate the probability density function parameters of angular glint for the planes, azimuth, and elevation angle for a single-blade rotor at an arbitrary rotation angle of the head. The relations obtained for a propeller hub with a single blade are generalized to the case of a propeller hub with an arbitrary number of blades. It is shown that the angular glint of the propeller hub is a random process with periodically changing parameters. The theoretical results are confirmed by mathematical modeling.
Citation
Maksim Stepanov, "Parameters of the Probability Density Function of Fluctuations of the Apparent Radiation Center from the Helicopter Propeller Hub," Progress In Electromagnetics Research Letters, Vol. 106, 103-110, 2022.
doi:10.2528/PIERL22062203
References

1. Mitchell, E. S. and E. D. McCarthy, "Hardware-in-the-loop simulation for an active missile," Simulation, Vol. 39, No. 5, 159-167, 1982.
doi:10.1177/003754978203900503

2. Sabitov, T. I., A. V. Kiselev, M. A. Stepanov, and M. V. Oreshkina, "Simulation of reflected signals in dual-position radar systems," Remote Sensing Letters, Vol. 12, No. 11, 1082-1089, 2021, doi: 10.1080/2150704X.2021.1964708.
doi:10.1080/2150704X.2021.1964708

3. Sayama, H., Introduction to the Modeling and Analysis of Complex Systems, Paperback, 2015.

4. Zuo, L., M. Li, X.-W. Zhang, and Y. Wu, "Two helicopter classification methods with a high pulse repetition frequency radar," IET Radar, Sonar and Navigation, Vol. 7, No. 3, 312-320, 2013, doi: 10.1049/iet-rsn.2012.0278.
doi:10.1049/iet-rsn.2012.0278

5. Stepanov, M. A. and A. V. Kiselev, "Replacement of a complex radar object by a two-point model," Journal of Computer and Systems Sciences International, Vol. 58, No. 4, 595-600, 2019, doi: 10.1134/S1064230719040063.
doi:10.1134/S1064230719040063

6. Guillaume, P., J.-F. Degurse, L. Savy, M. Mantecor, and J.-L. Milin, "Modelling the radar signature of rotorcraft," IET Radar, Sonar and Navigation, Vol. 15, No. 8, 867-883, 2021, doi: 10.1049/rsn2.12062.
doi:10.1049/rsn2.12062

7. Wu, W.-R., "Aarget tracking with glint noise," IEEE Transactions on Aerospace and Electronic Systems, Vol. 29, No. 1, 174-185, 1993.
doi:10.1109/7.249123

8. Sui, M. and X. Xu, "Angular glint calculations and analysis of radar targets via adaptive cross approximation algorithm," Journal of Systems Engineering and Electronics, Vol. 25, No. 3, 411-421, 2014.
doi:10.1109/JSEE.2014.00047

9. Guo, K., G. Xiao, Y. Zhai, and X. Sheng, "Angular glint error simulation using attributed scattering center models," IEEE Access, Vol. 6, 35194-35205, 2018.
doi:10.1109/ACCESS.2018.2846538

10. Ostrovityanov, R. V. and F. A. Basalov, Statistical Theory of Extended Radar Targets, Soviet Radio Publishing House, Moscow, 1982; Artech House, Debham, MA, 1985.

11. Huang, P. and H. Yin, "Angular glint of extended targets," Journal of Systems Engineering and Electronics, No. 12, 1-18, 1990.

12. Wang, C.-Q., X.-M.Wang, and X.-L. Shi, "Angular glint of aircraft formation and its applications," Binggong Xuebao/Acta Armamentarii, Vol. 29, No. 2, 1479-1484, 2008.

13. Yin, H. and P. Huang, "Methods of angular glint of aircraft augmentation --- A new thchnique of stealth," Journal of Astronautics, Vol. 20, No. 4, 80-87, 1994.

14. Zhou, Z., Z. He, X. Zhao, and Y. Luo, "Practicable research on suppressing angular glint base on the targets RCS weights," 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM), 1-5, 2010.

15. Yu, Y., J. Song, and W. Xiong, "Design and implementation of a hardware-in-loop radar simulation test system," 2019 2nd IEEE International Conference on Information Communication and Signal Processing, 161-164, 2019.

16. Chandler, C. A., "Electronic target position control at millimeter wave for hardware-in-the-loop applications,", US 2008/0088501, 2008.

17. Huang, P. and H. Yin, Characteristics of Rader Targets, 157-162, Press of Electronic Industry, Beijing, 2005.

18. Knott, E. F., J. F. Schaeffer, and M. T. Tuley, Radar Cross Section, Artech House, NY, 1985.

19. Jenn, D. C., Radar and Laser Cross Section, AIAA, Vierdgenia, 2005.
doi:10.2514/4.477027

20. Point, G. and L. Savy, "Simple modelling of the radar signature of helicopters," Radar 2017 --- International Conference on Radar Systems, 1-6, Belfast, 2017, doi: 10.1049/cp.2017.0425.

21. Point, G., J.-F. Degurse, L. Savy, J. Milin, and M. Montecot, "Parametric modelling of the radar signature of helicopters," 2019 International Radar Conference, 1-6, Toulon, 2019, doi: 10.1109/RADAR41533.2019.171395.

22. Skolnik, M. I., Radar Handbook, 3rd Ed., McGraw-Hill, 2008.

23. Mahafza, B. R., Radar Systems Analysis and Design Using Matlab, Crc Press, 2018.