Vol. 103
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-03-30
Design of a Highly Sensitive Sensor for Measuring Liquid Permittivity with Flexible Substrate
By
Progress In Electromagnetics Research Letters, Vol. 103, 99-107, 2022
Abstract
To further improve the sensitivity of liquid dielectric constant measurements, a cylindrical container-type dielectric constant sensor is proposed in this paper. The container of the sensor consists of a substrate integrated waveguide (SIW) loaded with complementary split ring resonators (CSRRs) and a microstrip line. In order to solve the problem that the electric field distribution of the traditional container liquid dielectric constant sensor is only in a single plane, which cannot obtain good resonance characteristics, the sidewall of the sensor container is surrounded by a flexible material loaded with CSRR-SIW. Higher sensitivity can be obtained from measuring dielectric constant with more concentrated electric field distribution. The simulation results show that when the permittivity of the liquid under test (LUT) changes from 1 to 10, the resonance frequency of the sensor changes from 4.50 GHz to 2.94 GHz. The resonance frequency shift with unit dielectric constant greater than 150 MHz is realized. Using the relationship between the fitting permittivity and resonance frequency, the measurement of the known liquid permittivity of the standard sample is carried out. The test results show that the relative error is less than 2%, and the test sensitivity is 3.85%.
Citation
Bo Yin, Xiangyu Shi, Juntao Yin, and Junguang Chen, "Design of a Highly Sensitive Sensor for Measuring Liquid Permittivity with Flexible Substrate," Progress In Electromagnetics Research Letters, Vol. 103, 99-107, 2022.
doi:10.2528/PIERL22011206
References

1. Mohamed, A., R. Amar, and H. Cherif, "Hyper-sensitive microwave sensor based on split ring resonator (SRR) for glucose measurement in water," Sensors and Actuators A: Physical, Vol. 321, 0924-4247, Apr. 2021.

2. Marathe, D. and K. Kulat, "A compact dual, triple band resonators for negative permittivity metamaterial," AEU-International Journal of Electronics and Communications, Vol. 88, 157-165, May 2018.

3. Ilona, P., W. Krzysztof, and G. Slawomir, "Detection of methanol contamination in ethyl alcohol employing a purpose-designed high-sensitivity microwave sensor," Measurement, Vol. 174, 0263-2241, Apr. 2021.

4. Hamed, R., M. Maani, and J. Babak, "Towards a machine-learning-assisted dielectric sensing platform for point-of-care wound monitoring," IEEE Sensors Letters, Vol. 4, No. 6, 1-4, Jun. 2020.

5. Viktorija, M., J. Aaron, and J. Simon, "Passive wireless UHF RFID antenna label for sensing dielectric properties of aqueous and organic liquids," IEEE Sensors Journal, Vol. 19, No. 11, 4299-4307, Jun. 2019.
doi:10.1109/JSEN.2019.2896481

6. Li, L., H. Hu, P. Tang, B. Chen, J. Tian, and S. Safavi-Naeini, "A modi ed open-ended rectangular waveguide based re ection approach for dielectric constant characterization of low-loss slab materials," IEEE Transaction Antennas and Propagation, Vol. 69, No. 11, 8009-8014, May 2021.
doi:10.1109/TAP.2021.3076486

7. Rasidian, A., L. Shafai, D. Klymyshyn, and C. Shafai, "A fast and efficient free-space dielectric measurement technique at mm-wave frequencies," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2630-2633, Aug. 2017.
doi:10.1109/LAWP.2017.2737632

8. Peng, Z., J. Hwang, and M. Andriese, "Maximum sample volume for permittivity measurements by cavity perturbation technique," IEEE Transactions on Instrumentation and Measurement, Vol. 63, No. 2, 450-455, Feb. 2014.
doi:10.1109/TIM.2013.2279496

9. Koirala, G., R. Dhakal, and E. Kim, "Radio frequency detection and characterization of water- ethanol liquid through spiral-coupled passive micro-resonator sensor," Sensors, Vol. 18, No. 4, Apr. 2018.
doi:10.3390/s18041075

10. Amir, E., W. Withawat, and A. Said, "High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization," IEEE Sensors Journal, Vol. 14, No. 5, 1345-1351, May 2014.
doi:10.1109/JSEN.2013.2295312

11. Abdolrazzaghi, M., D. Mojgan, and K. Ashwin, "Strongly enhanced sensitivity in planar microwave sensors based on metamaterial coupling," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 4, 1843-1855, Apr. 2018.
doi:10.1109/TMTT.2018.2791942

12. Sadat, J. F and A. S. Javad, "Reconfigurable microwave SIW sensor based on PBG structure for high accuracy permittivity characterization of industrial liquids," Sensors & Actuators A Physical, Vol. 283, 386-395, Jun. 2018.

13. Nilesh, K., P. Surya, and A. Jaleel, "Novel improved sensitivity planar microwave probe for adulteration detection in edible oils," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 2, 164-166, Feb. 2019.
doi:10.1109/LMWC.2018.2886062

14. Reyes-Vera, E., G. Acevedo-Osorio, M. Arias-Correa, and D. E. Senior, "A submersible printed sensor based on a monopole-coupled split ring resonator for permittivity characterization," Sensors, Vol. 19, No. 8, 1936-1936, Apr. 2019.
doi:10.3390/s19081936

15. Arani, A. and K. Mrinal, "Miniaturized substrate integrated waveguide (SIW) power dividers," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 11, 888-890, Nov. 2016.

16. Feng, X. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 1, 66-73, Jan. 2005.
doi:10.1109/TMTT.2004.839303

17. Salim, A. and S. Lim, "Complementary split-ring resonator-loaded microfluidic ethanol chemical sensor," Sensors, Vol. 16, No. 11, 1802-1802, Nov. 2016.
doi:10.3390/s16111802

18. Humberto, L., C. Alonso, L. Jose, A. Ricardo, P. Chavez, and L. Jose, "Wireless sensing of complex dielectric permittivity of liquids based on the RFID," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 9, 2160-2167, Sep. 2014.
doi:10.1109/TMTT.2014.2333711

19. Sadat, J. F. and A. S. Javad, "Reconfigurable microwave SIW sensor based on PBG structure for high accuracy permittivity characterization of industrial liquids," Sensors & Actuators A Physical, Vol. 283, 386-395, Jun. 2018.

20. Galindo, R., M. Herraiz, and V. Segovia, "Submersible printed split-ring resonator-based sensor for thin-film detection and permittivity characterization," IEEE Sensor Journal, Vol. 16, No. 10, 3587-3596, May 2016.
doi:10.1109/JSEN.2016.2538086