Vol. 102
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-01-06
High Performance CPW Fed Printed Antenna with Double Layered Frequency Selective Surface Reflector for Bandwidth and Gain Improvement
By
Progress In Electromagnetics Research Letters, Vol. 102, 47-55, 2022
Abstract
An aperture coupled printed antenna using frequency selective surface (FSS) reflector is reported in this paper. The proposed antenna includes two layers of FSS reflectors designed with an array of 7×5 crossed elements on the top substrate to achieve wideband, high gain and improved directivity. The antenna implements an aperture coupled radiating element on the bottom substrate which serves as a source feed antenna to the FSS reflector. The proposed structure has an overall dimension of 30×32×1.6 mm3 operating between 6.5 and 8.3 GHz with an impedance bandwidth of 1.8 GHz. The results reveal that the impedance bandwidths in excess of 82.3% and 44.5% have been achieved compared to the source feed antenna and antenna with single layer FSS, respectively. Further, the peak gain of 6.25 dB is also achieved in the operational frequency band with a two-layer FSS which is 29.4% and 15.8% more than the antenna without FSS and antenna with single FSS layer. Due to compact structure, wideband, high gain, and fabrication simplicity, the proposed antenna may be suitable for long distance communication systems.
Citation
Harikrishna Paik, Shailendra Kumar Mishra, Chadalvada Mohan Sai Kumar, and Kambham Premchand, "High Performance CPW Fed Printed Antenna with Double Layered Frequency Selective Surface Reflector for Bandwidth and Gain Improvement," Progress In Electromagnetics Research Letters, Vol. 102, 47-55, 2022.
doi:10.2528/PIERL21101703
References

1. Immoreev, I. Y., "Practical applications of UWB technology," IEEE Aerospace and Electronic Systems Magazine, Vol. 25, No. 2, 36-42, 2010.
doi:10.1109/MAES.2010.5442175

2. Nasimuddin, X. Qing, and Z. N. Chen, "A wideband circularly polarized stacked slotted microstrip patch antenna," IEEE Antennas and Propagation Magazine, Vol. 55, No. 6, 84-99, 2013.
doi:10.1109/MAP.2013.6781708

3. Kang, D., G. Cheng, Y. Wu, D. Qu, and Z. Bing, "A broadband circularly polarized printed monopole antenna with parasitic," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2509-2512, 2017.

4. Nicolas, F., D. Jean-Yves, K. Georges, and S. Robert, "Design optimization of UWB printed antenna for omnidirectional pulse radiation," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 7, 1875-1881, 2008.
doi:10.1109/TAP.2008.924704

5. Chen, D., W. Yang, and W. Che, "High-gain patch antenna based on cylindrically projected EBG planes," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 12, 2374-2378, 2018.
doi:10.1109/LAWP.2018.2875778

6. Liang, Z., Y. Li, X. Feng, J. Liu, and Y. Long, "Microstrip magnetic monopole and dipole antennas with high directivity and a horizontally polarized omnidirectional pattern," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 3, 1143-1152, 2018.
doi:10.1109/TAP.2018.2790442

7. Bai, C. X., Y. Z. Cheng, Y. R. Ding, and J. F. Zhang, "A metamaterial-based S/X-band shared-aperture phased-array antenna with wide beam scanning coverage," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 6, 4283-4292, 2020.
doi:10.1109/TAP.2020.2970096

8. Luo, Q., S. Gao, M. Sobhy, J. Li, G. Wei, and J. Xu, "A broadband printed monofilar square spiral antenna: A circularly polarized low-profile antenna," IEEE Antennas and Propagation Magazine, Vol. 59, No. 2, 79-87, 2017.
doi:10.1109/MAP.2017.2655528

9. Hashmi, R. M. and K. P. Esselle, "A class of extremely wideband resonant cavity antennas with large directivity-bandwidth products," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 2, 830-835, 2016.
doi:10.1109/TAP.2015.2511801

10. Akbari, M., S. Gupta, M. Farahani, A. R. Sebak, and T. A. Denidni, "Gain enhancement of circularly polarized dielectric resonator antenna based on FSS superstrate for MMW applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 12, 5542-5546, 2016.
doi:10.1109/TAP.2016.2623655

11. Rabia, Y., N. Akira, I. Makoto, and T. A. Denidni, "A novel UWB FSS-based polarization diversity antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2525-2528, 2017.

12. Narayanan, S., G. Gulati, B. Sangeetha, and U. N. Ravindranath, "Novel metamaterial-element-based FSS for airborne radome applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 9, 4695-4704, 2018.
doi:10.1109/TAP.2018.2851365

13. Wei, P.-S., C.-N. Chiu, C.-C. Chou, and T.-L. Wu, "Miniaturized dual-band FSS suitable for curved surface application," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2265-2269, 2020.
doi:10.1109/LAWP.2020.3029820

14. Chatterjee, A. and S. K. Parui, "Performance enhancement of a dual-band monopole antenna by using a frequency-selective surface-based corner reflector," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 6, 2165-2171, 2016.
doi:10.1109/TAP.2016.2552543

15. Al-Gburi, A. J. A., I. Ibrahim, M. Y. Zeain, and Z. Zakaria, "Compact size and high gain of CPW-fed UWB strawberry artistic shaped printed monopole antennas using FSS single layer reflector," IEEE Access, Vol. 8, 2697-2707, 2020.

16. Attia, H., M. Lamine Abdelghani, and T. A. Denidni, "Wideband and high-gain millimeter-wave antenna based on FSS Fabry-Perot cavity," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 10, 5589-5594, 2017.
doi:10.1109/TAP.2017.2742550

17. Sharma, A., B. K. Kanaujia, S. Dwari, D. Gangwar, S. Kumar, H. C. Choi, and K. W. Kim, "Wideband high-gain circularly-polarized low RCS dipole antenna with a frequency selective surface," IEEE Access, Vol. 7, 6592-6602, 2019.

18. Rasoul, F. and A. Iman, "Compact Fabry-Perot antenna with wide 3-dB axial ratio bandwidth based on FSS and AMC structures," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 8, 1326-1330, 2020.
doi:10.1109/LAWP.2020.2999745