Vol. 100
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-09-30
Low-Cost and Small Size Millimeter Wave (24 GHz ) Extended Hemispherical Lens Antenna for Automotive and Industrial Applications Using FR408HR Substrate
By
Progress In Electromagnetics Research Letters, Vol. 100, 73-80, 2021
Abstract
For the first time, an extended hemispherical integrated lens antenna on a low-cost substrate, FR408HR, is presented. The antenna is designed for industrial and automotive radar sensor applications operating in the 24 GHz ISM band. The proposed antenna has a gain of 15.2 dBi, low sidelobes, and half-power beamwidth of 16 degrees. To reduce the cost, we used low loss materials; Teflon for the lens and low-cost FR408HR as a patch antenna substrate. The size of the reported 24 GHz antenna is small. The diameter of the base of the lens is 38 mm (3 times of free space wavelength), and its height is 43.5 mm (with an extended height of 24.5 mm). Simulated results match well with measurements.
Citation
Waleed Ahmad, Furkan Dayi, Hamood Ur Rehman, and Wasif Tanveer Khan, "Low-Cost and Small Size Millimeter Wave (24 GHz ) Extended Hemispherical Lens Antenna for Automotive and Industrial Applications Using FR408HR Substrate," Progress In Electromagnetics Research Letters, Vol. 100, 73-80, 2021.
doi:10.2528/PIERL21080202
References

1. Tekkouk, K., M. Ettorre, R. Sauleau, and M. Casaletti, "Folded Rotman lens multibeam antenna in SIW technology at 24 GHz," 2012 6th European Conference on Antennas and Propagation (EUCAP), 2308-2310, Prague, 2012.
doi:10.1109/EuCAP.2012.6206347

2. Binzer, T., M. Klar, and V. GroB, "Development of 77 GHz radar lens antennas for automotive applications based on given requirements," 2007 2nd International ITG Conference on Antennas, 205-209, Munich, 2007.
doi:10.1109/INICA.2007.4353963

3. Lutz, S. and T. Walter, "Lens based 77 GHz TDM MIMO radar sensor for angular estimation in multitarget environments," 2013 European Radar Conference, 212-215, Nuremberg, 2013.

4. Wang, H. N., Y. T. Huang, and S. J. Chung, "A dielectric lens antenna feeding with microstrip patch antennas for 77 GHz long range radar application," 2012 Asia Paci c Microwave Conference Proceedings, 412-414, Kaohsiung, 2012.

5. Thornton, J. and K.-C. Huang, Modern Lens Antennas for Communications Engineering, Vol. 39, John Wiley & Sons, 2013.
doi:10.1002/9781118345146

6. Artemenko, A., A. Mozharovskiy, A. Maltsev, R. Maslennikov, A. Sevastyanov, and V. Ssorin, "2D electronically beam steerable integrated lens antennas for mmWave applications," 2012 42nd European Microwave Conference, 213-216, Amsterdam, 2012.
doi:10.23919/EuMC.2012.6459155

7. Nguyen, N. T., A. Rolland, A. V. Boriskin, G. Valerio, L. Le Coq, and R. Sauleau, "Size and weight reduction of integrated lens antennas using a cylindrical air cavity," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 12, 5993-5998, Dec. 2012.
doi:10.1109/TAP.2012.2208931

8. Mozharovskiy, A., A. Artemenko, V. Ssorin, R. Maslennikov, and A. Sevastyanov, "High gain millimeter-wave lens antennas with improved aperture efficiency," 2015 9th European Conference on Antennas and Propagation (EuCAP), 1-5, Lisbon, 2015.

9. Anderson, C. S., S. R. Aroor, and R. M. Henderson, "Closed-form and dispersive model considerations for relative permittivity extraction at millimetre-wave frequencies," IET Microwaves, Antennas & Propagation, Vol. 9, No. 14, 1638-1644, 2015.
doi:10.1049/iet-map.2014.0416

10. Vorst van der, M. J. M., "Integrated lens antennas for submillimetre-wave applications,", Technische Universiteit Eindhoven, Eindhoven, 1999, DOI: 10.6100/IR521250.

11. Kobayashi, H. and Y. Yasuoka, "Receiving properties of extended hemispherical lens coupled slot antennas for 94 GHz millimeter wave radiation," Electronics and Communications in Japan Part I --- Communications | Electron. Commun. Jpn. I., Vol. 84, 32-40, 2001, 10.1002/1520-6424(200106)84:63.0.CO;2-V.

12. Komljenovic, T., "Lens antennas --- Analysis and synthesis at mm-waves,".
doi:10.1109/8.817660

13. Fernandes, C. A., E. B. Lima, and J. R. Costa, "Dielectric lens antennas," Handbook of Antenna Technologies, 1-54, 2014.

14. Porter, B. G., L. L. Rauth, J. R. Mura, and S. S. Gearhart, "Dual-polarized slot-coupled patch antennas on Duroid with te on lenses for 76.5-GHz automotive radar systems," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 12, 1836-1842, Dec. 1999.

15. Karttunen, A., J. Ala-Laurinaho, R. Sauleau, and A. V. Raisanen, "A study of extended hemispherical lenses for a high-gain beam-steering antenna," Proceedings of the Fourth European Conference on Antennas and Propagation, 1-5, Barcelona, 2010.

16. Pourahmadazar, J. and T. A. Denidni, "Extended hemispherical integrated lens antenna for V-band application," 32nd URSI GASS, Montreal, Aug. 19-26, 2017.