Vol. 97
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-03-22
Fast Estimate of Plane Wave Attenuation of Conductive Powders for Rapid Deployment of Customized Cement Based Microwave Absorbing Solutions
By
Progress In Electromagnetics Research Letters, Vol. 97, 27-34, 2021
Abstract
Enhancing the electromagnetic absorption properties of pozzolanic cement provides scope for low cost realisation of frequency screened buildings. Electromagnetic wave attenuation attribute of conductive filler inclusions determines the absorption properties of filler loaded cement mortar. A transmission line based rapid measurement technique for the speedy estimate of microwave attenuation of conductive fillers is presented, providing quick approximates of cement mortar thickness for realizing customized absorption loss. Ash from three units of steel plant including EAF, AoD, and ARS units is investigated. Coaxial transmission line supports TEM propagation, hence is well suited for estimating plane wave characteristics. Ash filled coaxial transmission structures are subjected to scattering matrix measurements in the frequency range 800 MHz-4 GHz. Plane wave attenuation is estimated from the scattering matrix transfer coefficient (S21). Ashes guarantee minimum 10 dB/m attenuation in the specified frequency range with ash from ARS unit providing loss over 50 dB/m. The database of customized cement mortar (composite) thickness for realizing varied absorption losses, incorporating ARS ash, is projected. The presented technique reduces the requirement of anechoic chambers, broad band horns, and liability of prototyping large mortar samples (all frequency dependent), for estimating shielding properties of conductive filler loaded cement mortar composites, over wide band. Cement panels with customized absorption loss provide scope as low cost solution for managing device co-location issues encountered in evaluating EMI/EMC concerns is future IoT based systems.
Citation
Narayanan Sabarish, and Madaswamy Jayakumar, "Fast Estimate of Plane Wave Attenuation of Conductive Powders for Rapid Deployment of Customized Cement Based Microwave Absorbing Solutions," Progress In Electromagnetics Research Letters, Vol. 97, 27-34, 2021.
doi:10.2528/PIERL20112403
References

1. Nguyen, L., "Conductive concrete structures for EMP protection of critical infrastructure facilities," IEEE Letters on Electromagnetic Compatibility Practice and Applications, Vol. 1, No. 1, 26-33, March 2019.

2. Khalid, T., L. Albasha, N. Qaddoumi, and S. Yehia, "Feasibility study of using electrically conductive concrete for electromagnetic shielding applications as substitute for carbon-laced polyurethane absorbers in anechoic chambers," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 5, 2428-2435, May 2017.
doi:10.1109/TAP.2017.2670538

3. Zahari, M. H., B. H. Guan, C. E. Meng, M. F. C. Mansor, and L. K. Chuan, "EMI shielding effectiveness of composites based on barium ferrite, PANI and MWCNT," Progress In Electromagnetics Research M, Vol. 52, 79-87, 2016.
doi:10.2528/PIERM16080701

4. Jusoh, M. A., Y. K. Yeow, R. Nazlan, and F. Esa, "Electromagnetic shielding effectiveness of gypsum-magnetite composite at X-band frequecy," Progress In Electromagnetics Research Letters, Vol. 86, 21-26, 2019.
doi:10.2528/PIERL19051401

5. Suravarjhula, V. K., S. T. Manam, J. Venkatesan, S. Alluri, and N. B. Sabarish, "Cement based composite loaded with medicinal package waste for low profile electromagnetic shielding," 2018 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), 29-30, Boston, MA, 2018.

6. Sanjay Krishna, M., S. Balaji, G. Vadamalai Raj, P. A. Pravin, M. Sathish Kumar, N. K. Kothurkar, P. Ramani, N. B. Sabarish, and A. Moorthy, "Polymer-ion tungstate-reduced Grapheme oxide Nanocomposites for Microwave absorption," IOP Conf. Series: Materials Science and Engineering 577, 012079, 2019.
doi:10.1088/1757-899X/577/1/012079

7. Wanasinghe, D., F. Aslani, G. Ma, and D. Habibi, "Advances in electromagnetic interference shielding cementitious composites — Review," Construction and Building Materials, Vol. 231, 117116, 2020.
doi:10.1016/j.conbuildmat.2019.117116

8. Swaked, B., N. Qaddoumi, S. Yehia, and S. Farhana L. Nguyen, "Conductive concrete for smart cities," AEIT International Annual Conference, 2019, 2019.

9. Aravind, N. R., D. Sathyan, and K. M. Mini, "Rice husk incorporated foam concrete wall panels as a thermal insulating material in buildings," Indoor and Built Environment, 2019.

10. Fisher, L. V. and A. R. Barron, "The recycling and reuse of steelmaking slags — A review," Resources, Conservation and Recycling, Vol. 146, 244-255, 2019.
doi:10.1016/j.resconrec.2019.03.010

11. Adegoloye, G., A.-L. Beaucour, S. Ortola, and A. Noumowe, "Concretes made of EAF slag and AOD slag aggregates from stainless steel process: Mechanical properties and durability," Construction and Building materials, Vol. 76, 313-321, 2015.
doi:10.1016/j.conbuildmat.2014.12.007

12. Dai, Y., J. Wu, D. Wang, R. Li, C. Lu, and Z. Xu, "Electromagnetic wave absorbing properties of steel slag," Journal of Materials Engineering and Performance, Vol. 28, No. 1, 535-542, January 2019.
doi:10.1007/s11665-018-3831-7

13. Ozturk, M., O. Akgol, U. K. Sevim, M. Karaaslan, M. Demirci, and E. Unal, "“Experimental work on mechanical, electromagnetic and microwave shielding effectiveness properties of mortar containing electric arc furnace slag," Construction and Building Materials, Vol. 165, 58-63, 2018.
doi:10.1016/j.conbuildmat.2018.01.031

14. Paul, C. R., Introduction to Electromagnetic Compatibility, 1st Ed., Wiley Interscience, USA, 1992.

15. Wiklundh, K. and P. Stenumgaard, "EMC challenges for the internet of things," Proceedings of 2017 International Symposium on Electromagnetic Compatibility, EMC-Europe, September 2017.

16. Rathi, V., V. Panwar, and B. Prasad, "Characterization of PVDF-Gr composite films for electromagnetic interference shielding application," Progress In Electromagnetics Research Letters, Vol. 88, 105-112, 2020.
doi:10.2528/PIERL19090202

17. Akshaya, C., H. Abhiram, L. Akila, A. R. Allwin Bharathi, M. Sudhakar, and N. B. Sabarish, "Microwave studies on fly ash loaded natural rubber composites," Materials Today Proceedings, Vol. 24, 235-240, 2020.
doi:10.1016/j.matpr.2020.04.272