Vol. 95
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-12-09
Augmented Quaternion MUSIC Method for a Uniform/Sparse COLD Array
By
Progress In Electromagnetics Research Letters, Vol. 95, 25-32, 2021
Abstract
The quaternion multiple signal classification (Q-MUSIC) algorithm reduces the dimension of covariance matrix, which would result in performance degrading of DOA estimation. An augmented quaternion MUSIC algorithm (AQ-MUSIC) based on concentered orthogonal loop and dipole (COLD) array is presented in this paper. The proposed algorithm uses an augmented quaternion formalism to model the completely polarized signals, which allows a concise and novel way to an augmented covariance matrix. The fact reveals that more accurate DOA parameters could be extracted from an augmented covariance matrix. Even compared with the long vector MUSIC (LV-MUSIC) algorithm whose dimension of covariance matrix is the same as AQ-MUSIC, the accuracy of DOA parameter estimation is also improved. Simulation results verify the performance promotion of the proposed approach.
Citation
Zhiwei Jiang, Zehao Zhang, Tianyi Zhao, Hua Chen, and Weifeng Wang, "Augmented Quaternion MUSIC Method for a Uniform/Sparse COLD Array," Progress In Electromagnetics Research Letters, Vol. 95, 25-32, 2021.
doi:10.2528/PIERL20102303
References

1. Chintagunta, S. and P. Ponnusamy, "Spatial and polarization angle estimation of mixed-targets in MIMO radar," Progress In Electromagnetics Research M, Vol. 82, 49-59, 2019.
doi:10.2528/PIERM19041705

2. Shu, T., J. He, X. Han, X. Li, and K. Yu, "Joint DOA and degree-of-polarization estimation of partially-polarized signals using nested arrays," IEEE Communications Letters, Vol. 24, No. 10, 2182-2186, 2020.
doi:10.1109/LCOMM.2020.3004369

3. Chen, H., W. Wang, and W. Liu, "Joint DOA, range, and polarization estimation for rectilinear sources with a COLD array," IEEE Wireless Communications Letters, Vol. 8, No. 5, 1398-1401, Oct. 2019.
doi:10.1109/LWC.2019.2919542

4. Wang, W., H. Chen, J. Jin, X. Wang, L. Wan, and X. Zhang, "“Quaternion-MUSIC for near-field strictly noncircular sources with large-scale polarization array," Digital Signal Processing, Vol. 94, 137-145, Nov. 2019.

5. Nehorai, A. and E. Paldi, "Vector-sensor array processing for electromagnetic source localization," IEEE Transactions on Signal Processing, Vol. 42, No. 2, 376-398, Feb. 1994.
doi:10.1109/78.275610

6. Yue, Y., Y. Xu, Z. Liu, and L. Shen, "Parameter estimation of coexisted circular and strictly noncircular sources using diversely polarized antennas," IEEE Communications Letters, Vol. 22, No. 9, 1822-1825, 2018.
doi:10.1109/LCOMM.2018.2849402

7. Li, J. and R. T. Compton, "Angle and polarization estimation using ESPRIT with a polarization sensitive array," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 9, 1376-1383, Sept. 1991.
doi:10.1109/8.99047

8. Zoltowski, M. D. and K. T. Wong, "ESPRIT-based 2-D direction finding with a sparse array of electromagnetic vector-sensors," IEEE Transactions on Signal Processing, Vol. 48, No. 8, 2195-2204, Aug. 2000.
doi:10.1109/78.852000

9. Miron, S., N. Le Bihan, and J. I. Mars, "Quaternion-MUSIC for vector-sensor array processing," IEEE Transactions on Signal Processing, Vol. 54, No. 4, 1218-1229, Apr. 2006.
doi:10.1109/TSP.2006.870630

10. Le Bihan, N., S. Miron, and J. I. Mars, "MUSIC algorithm for vector-sensors array using biquaternions," IEEE Transactions on Signal Processing, Vol. 55, No. 9, 4523-4533, Sept. 2007.
doi:10.1109/TSP.2007.896067

11. Gong, X., Z. Liu, and Y. Xu, "Quad-quaternion MUSIC for DOA estimation using electromagnetic vector sensors," EURASIP Journal on Advances in Signal Processing, Vol. 2008, 204, 2008.

12. Castorina, G., L. Di Donato, A. F. Morabito, T. Isernia, and G. Sorbello, "Analysis and design of a concrete embedded antenna for wireless monitoring applications," IEEE Antennas and Propagation Magazine, Vol. 58, No. 6, 76-93, Dec. 2016.
doi:10.1109/MAP.2016.2609818

13. Chen, H., W. Liu, W. Zhu, M. Swamy, and Q. Wang, "Mixed rectilinear sources localization under unknown mutual coupling," Journal of the Franklin Institute, Vol. 356, No. 4, 2372-2394, 2019.
doi:10.1016/j.jfranklin.2019.01.019

14. Chen, H., W.-P. Zhu, W. Liu, et al. "RARE-based localization for mixed near-field and far-field rectilinear sources," Digit. Signal Process., Vol. 85, 54-61, Feb. 2019.
doi:10.1016/j.dsp.2018.11.006