Vol. 83
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-03-27
A Method of Reducing Air-Gap Harmonic of Permanent Magnet Motor for Fitness Car
By
Progress In Electromagnetics Research Letters, Vol. 83, 37-44, 2019
Abstract
In order to solve the high harmonic content of permanent magnet synchronous motor (PMSM) for fitness car, a PMSM with built-in permanent magnet bridge is proposed in this paper. Compared with surface mounted permanent magnet synchronous motor (SM-PMSM), the proposed motor with permanent magnet bridge structure has lower harmonic content. The performance and magnetization angle of the proposed motor are compared and analyzed in detail. The results obtained from finite element analysis show that the permanent magnet bridge can increase the air gap magnetic field intensity, and different directions of magnetization will affect the amplitude of fundamental wave of air gap magnetic density. Moreover, it can reduce the total harmonic distortion (THD) and make the magnetic density waveform more sinusoidal. It is very beneficial to the smooth output of torque of fitness car.
Citation
Jiancheng Zang, Yan Wang, and Libing Jing, "A Method of Reducing Air-Gap Harmonic of Permanent Magnet Motor for Fitness Car," Progress In Electromagnetics Research Letters, Vol. 83, 37-44, 2019.
doi:10.2528/PIERL19012201
References

1. Li, L., K. M. Lee, K. Bai, X. P. Ouyang, and H. Y. Yang, "Inverse models and harmonics compensation for suppressing torque ripples of multiphase permanent magnet motor," IEEE Trans. Ind. Electro., Vol. 65, No. 11, 8730-8739, Feb. 2018.
doi:10.1109/TIE.2018.2808935

2. Kumar, D. and K. Chaudhary, "Design of differential source fed circularly polarized rectenna with embedded slots for harmonics suppression," Progress In Electromagnetics Research C, Vol. 84, 175-187, 2018.
doi:10.2528/PIERC18021401

3. Jin, X. H., B. S. Li, and D. G. Xu, "A current harmonics suppression method for permanent magnet synchronous motor drives," 2017 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), 1-6, 2017.

4. Azeez, N. A., K. Gopakumar, J. Mathew, and C. Cecati, "A harmonic suppression scheme for open-end winding split-phase IM drive using capacitive filters for the full speed range," IEEE Trans. Ind. Electro., Vol. 61, No. 1, 5213-5221, Feb. 2014.
doi:10.1109/TIE.2014.2302388

5. Tiang, T. L., D. Ishak, C. P. Lim, and M. K. Jamil, "A comprehensive analytical subdomain model and its field solutions for surface-mounted permanent magnet machines," IEEE Trans. Magn., Vol. 51, No. 4, ID: 8104314, 2015.

6. Xie, K. F., D. W. Li, R. H. Qu, and D. Jiang, "Analysis and experimental comparison of spoke type and surfacemounted PM machines with fractional slot concentrated winding," 2016 19th International Conference on Electrical Machines and Systems (ICEMS), 1-6, 2016.

7. Hadef, M., M. R. Mekideche, A. Djerdir, and A. Miraoui, "An inverse problem approach for parameter estimation of interior permanent magnet synchronous motor," Progress In Electromagnetics Research B, Vol. 31, 15-28, 2011.
doi:10.2528/PIERB11021202

8. Zhao, N. N. and W. G. Liu, "Loss calculation and thermal analysis of surface-mounted PM motor and interior PM motor," IEEE Trans. Magn., Vol. 51, No. 11, ID: 8112604, 2015.

9. Butt, C. B. and M. A. Rahman, "Untrained artificial neuron-based speed control of interior permanent-magnet motor drives over extended operating speed range," IEEE Trans. Ind. Appl., Vol. 49, No. 3, 1146-1153, Mar. 2013.
doi:10.1109/TIA.2013.2253533

10. Brahim, L.-C., K. Boughrara, and R. Ibtiouen, "Cogging torque minimization of surface-mounted permanent magnet synchronous machines using hybrid magnet shapes," Progress In Electromagnetics Research B, Vol. 62, 49-61, 2015.

11. Chen, Z. F., C. L. Xia, Q. Geng, and Y. Yan, "Modeling and analyzing of surface-mounted permanent magnet synchronous machines with optimized magnetic pole shape," IEEE Trans. Magn., Vol. 5, No. 11, ID: 8102804, 2014.

12. Kim, K. S., M. R. Park, H. J. Kim, S. H. Chai, and J. P. Hong, "Estimation of rotor type using ferrite magnet considering the magnetization process," IEEE Trans. Magn., Vol. 52, No. 3, ID: 811804, 2016.

13. Jiang, Y. D., R. Pei, W. Xian, and Z. Hong, "Magnetization process of an HTS motor and the torque ripple suppression," IEEE Trans. Appl. Supercond., Vol. 19, No. 3, 1644-1647, 2009.
doi:10.1109/TASC.2009.2018417

14. Tiang, T. L., D. Ishak, C. P. Lim, and M. Rezal Mohamed, "Analytical method using virtual PM blocks to represent magnet segmentations in surface-mounted PM synchronous machines," Progress In Electromagnetics Research B, Vol. 76, 23-36, 2017.
doi:10.2528/PIERB17041501

15. Onsal, M., B. Cumhur, Y. Demir, E. Yolacan, and M. Aydin, "Rotor design optimization of a new flux assisted consequent pole spoke-type permanent magnet torque motor for low-speed applications," IEEE Trans. Magn., Vol. 54, No. 11, ID: 8206005, 2018.

16. Zhou, Y., H. Li, and G. Meng, "Analytical calculation of magnetic field and cogging torque in surface-mounted permanent-magnet machines accounting for any eccentric rotor shape," IEEE Trans. Ind. Electro., Vol. 62, No. 6, 3438-3447, 2015.

17. Chai, F., P. Liang, and Y. Pei, "Magnet shape optimization of surface-mounted permanent-magnet motors to reduce harmonic iron losses," IEEE Trans. Magn., Vol. 52, No. 7, ID: 6301304, 2016.

18. Zhang, X. J., L. B. Zeng, and R. L. Pei, "Designing and comparison of permanent magnet synchronous reluctance motors and conventional motors in electric vehicles," 2018 21st International Conference on Electrical Machines and Systems (ICEMS), 202-205, 2018.
doi:10.23919/ICEMS.2018.8549102

19. Noyal Doss, A., R. Brindha, K. Mohanraj, S. S. Dash, and K. M. Kavya, "A novel method for cogging torque reduction in permanent magnet brushless DC motor using T-shaped bifurcation in stator teeth," Progress In Electromagnetics Research M, Vol. 66, 99-107, 2018.