Vol. 81
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-01-13
A Compact Wideband Filtering Power Divider
By
Progress In Electromagnetics Research Letters, Vol. 81, 71-76, 2019
Abstract
A compact wideband filtering power divider is presented in this paper, by using coupled transmission lines at two output ports to realize filtering function. The return loss and insertion loss of the design in the passband are improved by inserting fan-shaped open stubs and etching a T-shaped slot at the input port. The central frequency of the power divider is 2.4 GHz. The measured results show a 10-dB fractional bandwidth of 60%, and a wideband filtering response can be obtained. The material object is designed by using FR4, and the size is 0.4λg*0.2λg. The design is well used in the WiFi band.
Citation
Guang Yang, Qiang Liu, Siqi Liu, and Yujia Chang, "A Compact Wideband Filtering Power Divider," Progress In Electromagnetics Research Letters, Vol. 81, 71-76, 2019.
doi:10.2528/PIERL18092901
References

1. Tang, X. and K. Mouthaan, "Analysis and design of compact two-way Wilkinson power dividers using coupled lines," Asia-Pacific Microw. Conf., 1319-1322, Dec. 7–10, 2009.

2. Rahim, N. H. A., M. F. A. H. Saari, S. Z. Ibrahim, M. S. Razalli, and G. S. Tan, "Wideband power divider using radial stub for six-port interferometer," IEEE Applied Electromagnetics, 127-131, 2017.

3. Chen, M., H.-W. Cheng, P.-C. Chang, C.-C. Liu, H.-C. Lin, and C.-W. Tang, "Design of a microstrip filtering power divider with a wide passband and broad stopband," IEEE Microwave Symposium, 1909-1911, 2017.

4. Shi, J. and K. Xu, "Filtering balanced-to-single-ended power divider with arbitrary power division ratio," IEEE Electrical Design of Advanced Packaging and Systems Symposium, 1-3, 2017.

5. Li, B., X. Wu, N. Yang, and W. Wu, "Dual-band equal/unequal Wilkinson power dividers based on coupled-line section with short-circuited stub," Progress In Electromagnetics Research, Vol. 111, 163-178, 2011.
doi:10.2528/PIER10110108

6. Li, G., X. Zhang, and Q. Xue, "Compact tunable filtering power divider with constant absolute bandwidth," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 10, 3505-3513, Oct. 2015.

7. Khan, A. A. and M. K. Mandal, "Miniaturized substrate integrated waveguide (SIW) power dividers," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 1, 888-890, 2016.
doi:10.1109/LMWC.2016.2615005

8. Wang, Y. J. and C.-X. Zhou, "A compact filtering power divider based on SIW triangular cavities," IEEE Electrical Design of Advanced Packing and Systems Symposium (EDAPS), 1-3, 2017.

9. Liu, Y., X. Yu, and S. Sun, "Design of a wideband filtering power divider with stub-loaded ring resonator," IEEE Applied Computational Electromagnetics Society Symposium, 1-2, 2017.

10. Shreyus, G. S., H. Khatwani, and K. Shambavi, "Power divider with substrate integrated waveguide and CSRR for C band application," Innovations in Power and Advanced Computing Technologies (i-PACT), 1-5, 2017.

11. Deng, P.-H., J.-H. Guo, and W.-C. Kuo, "New Wilkinson power dividers based on compact steppedimpedance transmission lines and shunt open stubs," Progress In Electromagnetics Research, Vol. 123, 407-426, 2012.
doi:10.2528/PIER11111612

12. Lu, Y., Y. Wang, C.-Z. Hua, and T.-J. Liu, "Wide stopband out-of-phase filtering power divider using double-sided parallel-strip line," Electronics Letters, Vol. 53, No. 25, 1659-1661, Dec. 2017.
doi:10.1049/el.2017.3677

13. Jiao, L., Y. Wu, Y. Liu, and Q. Xue, "Wideband filtering power divider with embedded transversal signal-interference sections," IEEE Micro. Wireless Compon. Lett., Vol. 27, No. 12, 1-3, Dec. 2017.
doi:10.1109/LMWC.2017.2758761

14. Gao, S., S. Sun, and S. Xiao, "A novel wideband bandpass power divider with harmonic-suppressed ring resonator," IEEE Micro. Wireless Compon. Lett., Vol. 23, No. 3, 119-121, Mar. 2013.
doi:10.1109/LMWC.2013.2244873

15. Wang, X., J. Wang, and G. Zhang, "Design of wideband filtering power divider with high selectivity and good isolation," Electronics Letters, Vol. 52, No. 16, 1389-1391, 2016.
doi:10.1049/el.2016.2065