Vol. 75
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-04-24
An Electrically Small Antenna Using Defected Ground Structure for RFID, GPS and IEEE 802.11 a/b /g /S Applications
By
Progress In Electromagnetics Research Letters, Vol. 75, 75-81, 2018
Abstract
A compact size (20×21 mm2) planar tri-band electrically small antenna is presented for Wireless ISM, RFID application resonating at 1.57 GHz, 2.47 GHz and 926 MHz. The Proposed structure consists of a dual-slot radiating patch and two split ring structures made using combination of L and U shapes forming a defected ground structure (DGS). Length and width of the planar slot is optimized to get the required frequency bands whereas incorporation of DGS leads to increase in impedance bandwidth. The simulated and measured return losses (S11) of all three frequency bands are greater than 10 dB. Impedance bandwidths of 20 MHz (913-934 MHz), 90 MHz (1.5-1.59 GHz) and 70 MHz (2.43-2.50 GHz) are achieved for the proposed range. The electrically small antenna radiation pattern is omnidirectional, and gains of 0.32 dBi, 1.2 dBi and 1.5 dBi are achieved which makes the antenna suitable for RFID, GPS and WLAN applications.
Citation
Riki Patel, Arpan Desai, and Trushit K. Upadhyaya, "An Electrically Small Antenna Using Defected Ground Structure for RFID, GPS and IEEE 802.11 a/b /g /S Applications," Progress In Electromagnetics Research Letters, Vol. 75, 75-81, 2018.
doi:10.2528/PIERL18021901
References

1. Patel, R. H. and T. K. Upadhyaya, "Compact planar dual band antenna for WLAN application," Progress In Electromagnetics Research Letters, Vol. 70, 89-97, 2017.
doi:10.2528/PIERL17062704

2. Patel, R. and T. Upadhyaya, "An electrically small antenna for nearfield biomedical applications," Microwave and Optical Technology Letters, Vol. 60, No. 3, 556-561, 2018.
doi:10.1002/mop.31007

3. Kornev, V. K., et al. "Active electrically small antenna based on superconducting quantum array," IEEE Transactions on Applied Superconductivity, Vol. 23, No. 3, 1800405-1800405, 2013.
doi:10.1109/TASC.2012.2232691

4. Bhad, M. C., V. G. Kasabegoudar, and M. P. Rodge, "Electrically small rectangular patch antenna with slot for MIMO applications," Wireless and Mobile Technologies, Vol. 1, No. 1, 25-28, 2013.

5. Ren, X., X. Chen, and K. Huang, "A novel electrically small meandered line antenna with a tridentshaped feeding strip for wireless applications," International Journal of Antennas and Propagation, Vol. 2012, 2012.

6. Sum, Y. L., et al. "Scalable 2.45GHz electrically small antenna design for metaresonator array," The Journal of Engineering, Vol. 1, No. 1, 2017.

7. Kuhestani, H., M. Rahimi, Z. Mansouri, F. B. Zarrabi, and R. Ahmadian, "Design of compact patch antenna based on metamaterial for WiMAX applications with circular polarization," Microwave and Optical Technology Letters, Vol. 57, No. 2, 357-360, 2015.
doi:10.1002/mop.28846

8. El Halaoui, M., et al. "Multiband planar inverted-F antenna with independent operating bands control for mobile handset applications," International Journal of Antennas and Propagation, Vol. 2017, 2017.

9. Heidari, A. A., M. Heyrani, and M. Nakhkash, "A dual-band circularly polarized stub loaded microstrip patch antenna for GPS applications," Progress in Electromagnetics Research, Vol. 92, 195-208, 2009.
doi:10.2528/PIER09032401

10. Reyes-Vera, E., et al. "Development of an improved response ultra-wideband antenna based on conductive adhesive of carbon composite," Progress In Electromagnetics Research, Vol. 79, 199-208, 2017.
doi:10.2528/PIERC17091809

11. Khanna, R., "A review of various multi-frequency antenna design techniques," Indian Journal of Science and Technology, Vol. 10, No. 16, 2017.

12. Mahmoud Ali, M. M., A. A. R. Saad, and E. E. M. Khaled, "A design of miniaturized ultrawideband printed slot antenna with 3.5/5.5GHz dual band-notched characteristics: Analysis and implementation," Progress In Electromagnetics Research B, Vol. 52, 37-56, 2013.
doi:10.2528/PIERB13041303

13. Zhu, N. and R. W. Ziolkowski, "Broad-bandwidth, electrically small antenna augmented with an internal non-Foster element," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1116-1120, 2012.

14. Heydari, S., P. Jahangiri, A. S. Arezoomand, and F. B. Zarrabi, "Circular polarization fractal slot by Jerusalem cross slot for wireless applications," Progress In Electromagnetics Research, Vol. 63, 79-84, 2016.
doi:10.2528/PIERL16070802

15. Shivapanchakshari, T. G. and H. S. Aravinda, "Review of research techniques to improve system performance of smart antenna," Open Journal of Antennas and Propagation, Vol. 5, No. 2, 83, 2017.
doi:10.4236/ojapr.2017.52007

16. Vera, E. R., F. Lopez, D. E. Senior, and D Catano, "Performance analysis of a microstrip patch antenna loaded with an array of metamaterial resonators," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 281-282, 2016.

17. Memarzadeh-Tehran, H., R. Abhari, and M. Niayesh, "A cavity-backed antenna loaded with complimentary split ring resonators," AEU-International Journal of Electronics and Communications, Vol. 70, No. 7, 928-935, 2016.
doi:10.1016/j.aeue.2016.04.010

18. Zhang, C., J. Zhang, and L. Li, "riple band-notched UWB antenna based on SIR-DGS and fork-shaped stubs," Electronics Letters, Vol. 50, No. 2, 67-69, 2014.
doi:10.1049/el.2013.2513

19. He, Z., J. Cai, Z. Shao, X. Li, and Y. Huang, "A novel power divider integrated with SIW and DGS technology," Progress In Electromagnetics Research, Vol. 139, 289-301, 2013.
doi:10.2528/PIER13022005

20. Singh, A. and S. Singh, "A novel CPW-fed wideband printed monopole antenna with DGS," AEUInternational Journal of Electronics and Communications, Vol. 69, No. 1, 299-306, 2015.
doi:10.1016/j.aeue.2014.09.016

21. Kimouche, H. and S. Oukil, "Electrically small antenna with defected ground structure," 2012 42nd European Microwave Conference, 811-814, Amsterdam, 2012.
doi:10.23919/EuMC.2012.6459430

22. Chu, L. J., "Physical limitations on omni-directional antennas," Journal of Applied Physics, Vol. 19, l163-l175, 1948.

23. Patel, R. H., A. Desai, and T. Upadhyaya, "A discussion on electrically small antenna property," Microwave Opt. Technol. Lett., Vol. 57, No. 10, 2386-2388, 2015.
doi:10.1002/mop.29335