Vol. 74
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-03-07
A Compact Broadband Printed Circular Slot Antenna with Stair Shaped Ground Plane
By
Progress In Electromagnetics Research Letters, Vol. 74, 9-16, 2018
Abstract
This is the first communication reporting a compact broadband printed circular slot antenna with stair shaped ground plane in which bandwidth is enhanced mainly in the lower frequency band on adding 19 strips at regular space intervals in the partial ground plane. The impedance matching at specific band (7.1-8.4 GHz) takes place as a result of circular slot in the patch. The proposed structure is printed on an FR4 substrate with εr = 4.3 and 0.025 loss tangent over a compact volume of 20×25×1.5 mm3. The impedance bandwidth (S11 < -10 dB) of the proposed antenna is 133.7 % (3.0-15.1 GHz). The antenna exhibits 4.9 dB peak gain and 74 % peak radiation efficiency in the operating band. Satisfactory results and such a simple and easy to fabricate design with compact space make the proposed antenna a suitable choice for UWB applications, 5.2/5.8 GHz WLAN bands, 3.5/5.5 GHz Wi-MAX bands, X band (8-12 GHz) and other wireless communication systems. Measured and simulated results are in good agreement, affirming the simulation process. Omnidirectional radiation patterns are generally observed in the operating band of the designed antenna.
Citation
Sudeep Baudha, and Kumar Vishwakarma Dinesh, "A Compact Broadband Printed Circular Slot Antenna with Stair Shaped Ground Plane," Progress In Electromagnetics Research Letters, Vol. 74, 9-16, 2018.
doi:10.2528/PIERL17120305
References

1. Wong, K. L., Compact and Broadband Microstrip Antennas, John Wiley & Sons, 2002.
doi:10.1002/0471221112

2. Samsuzzaman, M. and M. T. Islam, "A semi-circular shaped super wideband patch antenna with high bandwidth dimension ratio," Microwave and Optical Technology Letters, Vol. 57, No. 2, 445-452, Feb. 2015.
doi:10.1002/mop.28872

3. Baudha, S. and D. K. Vishwakarma, "Miniaturized dual broadband printed slot antenna with parasitic slot and patch," Microwave and Optical Technology Letters, Vol. 56, No. 10, 2260-2265, Oct. 2014.
doi:10.1002/mop.28567

4. Ojaroudi, N. and M. Ojaroudi, "Novel design of dual band-notched monopole antenna with bandwidth enhancement for UWB applications," IEEE Antennas and Wireless Propag. Letters, Vol. 12, 698-701, 2013.
doi:10.1109/LAWP.2013.2264713

5. Telsang, T. M. and A. B. Kakade, "Ultra wideband slotted semicircular patch antenna," Microwave and Optical Technology Letters, Vol. 56, No. 2, 362-369, Feb. 2014.
doi:10.1002/mop.28102

6. Baudha, S. and D. K. Vishwakarma, "A compact broadband printed monopole antenna with Ushaped slit and rectangular parasitic patches for multiple applications," International Journal of Microwave and Wireless Technologies, No. 4, Apr. 2014.

7. Moghadasi, M. N., R. Hafezifard, R. A. Sadeghzadeh, H. Seyyedhatami, and M. Torkamani, "Small circular-shaped UWB antenna for wireless communication applications," Microwave Optical Technology Letters, Vol. 54, No. 12, 2885-2888, Dec. 2012.
doi:10.1002/mop.27201

8. Baudha, S. and D. K. Vishwakarma, "Bandwidth enhancement of a planar monopole microstrip patch antenna," International Journal of Microwave and Wireless Technologies, No. 12, Dec. 2014.

9. Karli, R., H. Ammor, J. Terhzaz, M. Chaibi, and A. M. Sanchez, "Design and construction of miniaturized UWB microstrip antenna with slots for UWB applications," Microwave and Optical Technology Letters, Vol. 57, No. 2, 460-463, Feb. 2015.
doi:10.1002/mop.28869

10. Lu, J. H. and C. H. Yeh, "Planar broadband arc-shaped monopole antenna for UWB system," IEEE Trans. Antennas Propag., Vol. 60, No. 7, 3091-3094, Jul. 2012.
doi:10.1109/TAP.2012.2196954

11. Ray, K. P., S. S. Thakur, and A. A. Deshmukh, "Slot cut printed elliptical UWB monopole antenna," Microwave and Optical Technology Letters, Vol. 56, No. 3, 631-635, Mar. 2014.
doi:10.1002/mop.28134

12. Baudha, S. and D. K. Vishwakarma, "Corner truncated broadband patch antenna with circular slots," Microwave and Optical Technology Letters, Vol. 57, No. 4, 845-849, Apr. 2015.
doi:10.1002/mop.28968

13. Sze, J. Y. and K. Wong, "Bandwidth enhancement of a microstrip line-fed printed wide-slot antenna," IEEE Trans. Antennas Propag., Vol. 49, No. 7, 1020-1024, Jul. 2001.
doi:10.1109/8.933480

14. Jan, J. Y. and J. W. Su, "Bandwidth enhancement of a printed wide-slot antenna with a rotated slot," IEEE Trans. Antennas Propag., Vol. 53, No. 6, 2111-2114, Jun. 2005.
doi:10.1109/TAP.2005.848518

15. Jan, J. Y. and L. C. Wang, "Printed wideband rhombus slot antenna with a pair of parasitic strips for multiband applications," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 1267-1270, Apr. 2009.
doi:10.1109/TAP.2009.2015859

16. Sung, Y., "Bandwidth enhancement of a microstrip line-fed printed wide-slot antenna with a parasitic centre patch," IEEE Trans. Antennas Propag., Vol. 60, No. 4, 1712-1716, Apr. 2012.
doi:10.1109/TAP.2012.2186224