Vol. 72
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-01-17
A Quantitative Analysis of Coupling for a WPT System Including Dielectric/Magnetic Materials
By
Progress In Electromagnetics Research Letters, Vol. 72, 127-134, 2018
Abstract
Dielectric or magnetic materials introduced in a wireless power transfer (WPT) system affect the properties of WPT. This paper quantitatively studies the coupling between the transmitting and receiving elements for a WPT system including either dielectric or magnetic materials. The transmitting and receiving elements are open spirals and solenoid coils which are usually used in WPT systems. The analysis method is the perturbation method which can calculate the total coupling coefficient k, the electric coupling component ke and the magnetic coupling component km simultaneously. This paper gives quantitatively analyzed data on km and ke to indicate how much km and ke are affected by a dielectric or magnetic material introduced in a WPT system.
Citation
Yangjun Zhang, Tatsuya Yoshikawa, and Takahiro Kitahara, "A Quantitative Analysis of Coupling for a WPT System Including Dielectric/Magnetic Materials," Progress In Electromagnetics Research Letters, Vol. 72, 127-134, 2018.
doi:10.2528/PIERL17102001
References

1. Tesla, N., Transmission of electrical energy without wire, Elect. World Eng., Mar. 5, 1904, Online Available: www.tfcbooks.com/tesla/.

2. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, 83-86, Jul., 2007.
doi:10.1126/science.1143254

3. Shonohara, N., Wireless Power Transfer via Radiowaves, ISTE Ltd and John Wiley & Sons, Inc, 2014.

4. Awai, I., "Magnetic resonant wireless power transfer," Nikkei Electronics, 2011.

5. Ohira, T., "Maximum available efficiency formulation based on a black-box model of linear twoport power transfer systems," IEICE Electronics Express, ELEX, Vol. 11, No. 13, 1-6, 2014.

6. Awai, I., Y. Zhang, T. Komori, and T. Ishizaki, "Coupling coefficient of spiral resonators used for wireless power transfer," 2010 Asia-Pacific Microwave Conference, 773-776, Dec. 2010.

7. Zhang, Y., T. Yoshikawa, and I. Awai, "Analysis of electric and magnetic coupling components for spiral resonators used in wireless power transfer," 2014 Asia-Pacific Microwave Conference, 1366-1368, Nov. 2014.

8. Awai, I. and T. Ishizaki, "Design of magnetic resonance type WPT systems based on filter theory," Electronics and Communications in Japan, Vol. 96, No. 10, 1-11, 2013.
doi:10.1002/ecj.11543

9. Hui, S. Y. R., "Magnetic resonance for wireless power transfer [A look back]," IEEE Power Electronics Magazine, Vol. 3, No. 1, 14-31, 2016.
doi:10.1109/MPEL.2015.2510441

10. Zhang, J., X. Yuan, C.Wang, and Y. He, "Comparative analysis of two-coil and three-coil structures for wireless power transfer," IEEE Transactions on Power Electronics, Vol. 32, No. 1, 341-352, 2017.
doi:10.1109/TPEL.2016.2526780

11. Tierney, B. B. and A. Grbic, "Design of self-matched planar loop resonators for wireless nonradiative power transfer," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 4, 909-919, 2014.
doi:10.1109/TMTT.2014.2303940

12. Awai, I., S. Iwamujra, H. Kubo, and A. Sanada, "Separation of coupling coefficient between resonators into electric and magnetic contributions," IEICE Trans. Electron, Vol. J88-C, No. 12, 1033-1039, 2005.

13. Hong, J.-S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., 2001.
doi:10.1002/0471221619

14. Awai, I. and Y. Zhang, "Coupling coefficient of resonators," IEICE Trans. Electron, Vol. J89-C, No. 12, 962-968, 2006.

15. Elnaggar, S. Y., R. J. Tervo, and S. M. Mattar, "Coupled mode theory applied to resonators in the presence of conductors," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 7, 2124-2132, 2015.
doi:10.1109/TMTT.2015.2432766

16. Awai, I., Y. Sawahara, and T. Ishizaki, "Choice of resonators for a WPT system in lossy materials," IEEE WPTC 2014, T-Fr3-4, May 2014.