Vol. 72
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-12-06
The Research of W-Band High Order Frequency Multiplier Based on Avalanche Diode
By
Progress In Electromagnetics Research Letters, Vol. 72, 45-53, 2018
Abstract
A research of millimeter wave high order frequency multiplier based on the fierce inductive nonlinearity of avalanche diode is presented. The operation of high order frequency multiplication is introduced, and the high order harmonics generation character under external RF field modulation is analyzed. The characteristc of multiplier circuit is also discussed. Maximum output power of 6 mW and minimum conversion loss of 17 dB are obtained at output frequencies of 94 GHz and 96 GHz with 15th multiplication order. The phase noise of output 94 GHz signal is about -90 dBc/Hz and -94.33 dBc/Hz at 10 kHz and 100 kHz offset.
Citation
Lingling Song, and Minghua Zhao, "The Research of W-Band High Order Frequency Multiplier Based on Avalanche Diode," Progress In Electromagnetics Research Letters, Vol. 72, 45-53, 2018.
doi:10.2528/PIERL17092109
References

1. Vahdati, H. and A. Abdipour, "Nonlinear stability analysis of an oscillator with distributed element resonator," Progress In Electromagnetics Research, Vol. 80, 241-252, 2008.
doi:10.2528/PIER07111701

2. Vahdati, H. and A. Abdipour, "Nonlinear stability analysis of microwave oscillators using the periodic averaging method," Progress In Electromagnetics Research, Vol. 79, 179-193, 2008.
doi:10.2528/PIER07100101

3. Shi, Z.-G., S. Qiao, and K. S. Chen, "Ambiguity functions of direct chaotic radar employing microwave chaotic colpitts oscillator," Progress In Electromagnetics Research, Vol. 77, 1-14, 2007.
doi:10.2528/PIER07072001

4. Mokari, H. and P. Derakhshan-Barjoei, "Numerical analysis of homojunction gallium arsenide avalanche," Progress In Electromagnetics Research B, Vol. 7, 159-172, 2008.
doi:10.2528/PIERB08032702

5. Seyedi, M. H., "Numerical analysis of homojunction avalanche photodiodes (APDs)," Progress In Electromagnetics Research C, Vol. 3, 45-56, 2008.
doi:10.2528/PIERC08013004

6. Akbarzade, M., D. D. Ganji, and M. H. Pashaei, "Analysis of nonlinear oscillators with U force by He’s energy balance method," Progress In Electromagnetics Research C, Vol. 3, 57-66, 2008.
doi:10.2528/PIERC08032901

7. Zhang, H., J. Wang, and C. Tong, "Progress in theoretical design and numerical simulation of high power terahertz backward wave oscillator," PIERS Online, Vol. 4, No. 3, 311-315, 2008.
doi:10.2529/PIERS071001065701

8. Lin, M.-C. and P.-S. Lu, "An injection-locked millimeter wave oscillator based on field-emission cathodes," PIERS Online, Vol. 4, No. 3, 371-375, 2008.
doi:10.2529/PIERS070906183455

9. Peidaee, P. and A. Baghai-Wadji, "On the calculation of polynomially perturbed harmonic oscillators," PIERS Online, Vol. 3, No. 4, 485-489, 2007.
doi:10.2529/PIERS061202155000

10. Lin, M.-C. and P. S. Lu, "Interaction mechanism of a field emission based THz oscillator," PIERS Online, Vol. 3, No. 7, 1011-1015, 2007.
doi:10.2529/PIERS061007104929

11. Chen, Z. and J. Xu, "Design and characterization of aW-band power-combined frequency tripler for high-power and broadband operation," Progress In Electromagnetics Research, Vol. 134, 133-150, 2013.
doi:10.2528/PIER12092009

12. Siles, J. V., C. Lee, R. Lin, et al. "A high-power 105–120 GHz broadband on-chip power-combined frequency tripler," Microwave and Wireless Components Letters, Vol. 25, No. 3, 157-159, 2015.
doi:10.1109/LMWC.2015.2390539

13. Bao, M., R. Kozhuharov, and H. Zirath, "A high power-efficiency D-band frequency tripler MMIC with gain up to 7 dB," Microwave and Wireless Components Letters, Vol. 24, No. 2, 123-125, IEEE 2014.
doi:10.1109/LMWC.2013.2290273

14. Kim, S. K., C. Choi, C. Cui, et al. "A W-band signal generation using N-push frequency multipliers for low phase noise," Microwave and Wireless Components Letters, Vol. 24, No. 10, 710-712, IEEE 2014.
doi:10.1109/LMWC.2014.2342873

15. Siles, J. V., C. Lee, R. Lin, et al. "A high-power 105–120 GHz broadband on-chip power-combined frequency tripler," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 3, 157-159, 2015.
doi:10.1109/LMWC.2015.2390539

16. Rolland, P. A., J. L. Vaterkowski, E. Constant, and G. Salmer, "New modes of operation for avalanche diodes: Frequency multiplication and upconversion," IEEE Trans. Microwave Theory Tech., Vol. 24, 768-775, 1976.
doi:10.1109/TMTT.1976.1128958

17. Ermak, G. P. and A. V. Varavin, "2-mm wave vector network analyzer upon high-order IMPATT multipliers," International Journal of Infrared and Millimeter Waves, Vol. 27, 681-686, 2006.

18. Ermak, G. P., A. V. Varavin, and E. A. Alekseev, "Phase locking of 2-mm wave sources upon high-order IMPATT multipliers," International Journal of Infrared and Millimeter Waves, Vol. 24, 1609-1615, 2003.
doi:10.1023/A:1026079116516

19. Huang, J., T. Gan, and Y. Zou, "A novel W-band fully coherent solid-state radar transceiver," 2001 CIE International Conference on Proceedings Radar, 907-911, 2001.

20. Zhao, M., Y. Fan, and Y. Zhang, "The W-band high order avalanche diode frequency multipliers," International Journal of Infrared and Millimeter Waves, Vol. 28, 663-669, 2007.
doi:10.1007/s10762-007-9238-4

21. Rolland, P. A., G. Salmer, A. Derycke, and J. Michel, "Very-high-rank avalanche diode frequency multiplier," Proceedings of the IEEE, Vol. 61, 1757-1758, 1973.
doi:10.1109/PROC.1973.9365

22. Rolland, P. A., E. Constant, A. Derycke, and J. Michel, "Multiplication de frequence par diode a avalanche en ondes millimetriques," Acts Electronics, Vol. 17, 213-228, 1974.

23. Kramer, B. M., A. C. Derycke, A. Farrayre, and C. F. Masse, "High-efficiency frequency multiplication with GaAs avalanche diodes," IEEE Trans. Microwave Theory Tech., Vol. 24, 861-863, 1976.
doi:10.1109/TMTT.1976.1128976

24. Venger, A. Z., A. N. Ermak, and A. M. Yakimenko, "Frequency multiplier based on an avalancheand- transit diode," Instruments and Experimental Techniques, Vol. 23, 691-692, 1980.

25. Haddad, G. I., P. T. Greiling, and W. E. Schroeder, "Basic principles and properties of avalanche transit-time devices," IEEE Trans. Microwave Theory Tech., Vol. 18, 752-772, 1970.
doi:10.1109/TMTT.1970.1127352

26. Read, W. T., "A proposed high frequency negative resistance diode," Bell System Tech. Journal, Vol. 37, 400-446, 1958.

27. Constant, E., E. Allamando, and A. Semichon, "Transit-time operation of an avalanche diode driven by a subharmonic signal and its application to frequency multiplication," Proceeding of the IEEE, Vol. 58, 483-484, 1970.
doi:10.1109/PROC.1970.7662

28. Gilden, M. and M. E. Hines, "Electronic tuning effects in the read microwave avalanche diode," IEEE Transactions on Electron Devices, Vol. 13, 169-175, 1966.
doi:10.1109/T-ED.1966.15652

29. Sze, S. M., Physics of Semiconductor Devices, 3rd Ed., Wiley, New York, 2006.
doi:10.1002/0470068329

30. Zhao, M., J. Zhan, Y. Fan, Z. He, and Y. Zhang, "A novel W-band microstrip integrated avalanche diode high order frequency multiplier," International Journal of Infrared and Millimeter Waves, Vol. 29, 741-747, 2008.
doi:10.1007/s10762-008-9371-8

31. Wu, Z., "Electromagnetic analysis of the oscillator with a cap structure," Journal of Chengdu Institution of Radio Engineer, Vol. 4, 68-77, 1981.

32. Zhao, M., Y. Fan, D. Wu, and Z. He, "The investigation of Wband microstrip integrated high order frequency multiplier based on the nonlinear model of avalanche diode," Progress In Electromagnetics Research, Vol. 85, 439-453, 2008.
doi:10.2528/PIER08090702