Vol. 68
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-05-31
Analysis and Synthesis of Multiband Sierpinski Carpet Fractal Antenna Using Hybrid Neuro-Fuzzy Model
By
Progress In Electromagnetics Research Letters, Vol. 68, 59-65, 2017
Abstract
The paper presents the application of a hybrid neuro-fuzzy model for the analysis and synthesis of a square multiband Sierpinski carpet fractal antenna. For the analysis model, the antenna geometrical parameters were taken as the input, and the resonant frequencies were obtained as the output while for the synthesis model, the resonant frequencies were taken as the input, and geometrical parameters were obtained as the output. Also, a model was trained to obtain the return loss characteristics for the given set of geometrical parameters. The developed model was validated by comparing the resonant frequencies and radiation patterns of the simulated and fabricated antennas.
Citation
Aarti Gehani, Prashasti Agnihotri, and Dhaval A. Pujara, "Analysis and Synthesis of Multiband Sierpinski Carpet Fractal Antenna Using Hybrid Neuro-Fuzzy Model," Progress In Electromagnetics Research Letters, Vol. 68, 59-65, 2017.
doi:10.2528/PIERL16100701
References

1. Fnjimoto, K., A. Henderson, K. Hirasawa, and J. R. James, Small Antennas, John Wiley & Sons, New York, 1987.

2. Skrivervik, A. K., J.-F. Zurcher, O. Staub, and J. R. Mosig, "PCS antenna design: The challenge of miniaturization," IEEE Antennas and Propagation Magazine, Vol. 43, No. 4, 12-26, Aug. 200.
doi:10.1109/74.951556

3. Maci, S. and G. Biffi Gentili, "Dual-frequency patch antennas," IEEE Antennas and Propagation Magazine, Vol. 39, No. 6, 13-20, Dec. 1997.
doi:10.1109/74.646798

4. Mandelbrot, B. B., The Fractal Geometry of Nature, W. H. Freeman, New York, 1983.

5. Jaggard, D. L., "On fractal electrodynamics," Recent Advances in Electromagnetic Theory, H. N. Kritikos and D. L. Jaggard (eds.), 183-224, Springer-Verlag, New York, 1990.

6. Werner, D. H., "An overview of fractal electrodynamics research," Proceedings of the 11th Annual Review of Progress in Applied Computational Electromagnetics (ACES), Vol. 2, 964-969, 1995.

7. Jaggard, D. L., "Fractal electrodynamics: Wave interactions with discretely self-similar structures," Electromagnetic Symmetry, C. Baum and H. Kritikos (eds.), 231-281, Taylor and Francis Publishers, Washington DC, 1995.

8. Jaggard, D. L., "Fractal electrodynamics: From super antennas to superlattices," Fractals in Engineering, J. L. Vehel, E. Lutton, and C. Tricot (eds.), 204-221, Springer-Verlag, New York, 1997.

9. Kim, Y. and D. L. Jaggard, "The fractal random array," Proceedings of the IEEE, Vol. 74, No. 9, 1278-1280, 1986.
doi:10.1109/PROC.1986.13617

10. Anuradha, A. Patnaik and S. N. Sinha, "Design of custom-made fractal multi-band antennas using ANN-PSO," IEEE Antennas and Propagation Magazine, Vol. 53, No. 4, 94-101, Aug. 2011.
doi:10.1109/MAP.2011.6097296

11. Werner, D. H., P. L. Werner, and K. H. Church, "Genetically engineered multiband fractal antenna," Electronics Letters, Vol. 37, No. 19, 1150-1151, Sep. 2001.
doi:10.1049/el:20010802

12. Pantoja, M. F., F. G. Ruiz, A. R. Bretones, R. G. Martin, J. M. Gonzalez-Arbesu, J. Romeu, and J. M. Rius, "GA design of wire pre-fractal antennas and comparison with other Euclidean geometries," IEEE Antennas and Wireless Propagation Letters, Vol. 2, No. 1, 238-241, 2003.
doi:10.1109/LAWP.2003.819694

13. Azaro, R., E. Zeni, M. Zambelli, and A. Massa, "Synthesis and optimization of pre-fractal multiband antennas," European Conference on Antennas and Propagation, 1-5, 2006.

14. Gregory, M. D., J. S. Petko, T. G. Spence, and D. H. Werner, "Nature-inspired design techniques for ultra-wideband aperiodic antenna arrays," IEEE Antennas and Propagation Magazine, Vol. 52, No. 3, 28-45, 2010.
doi:10.1109/MAP.2010.5586571

15. Oliveira, E. E. C., M. S. Vieira, W. C. Araujo, P. Carlos, and A. G. D’Assuncao, "Optimization of the input impedance of Koch prefractals antennas with genetic algorithms," International Microwave and Optoelectronics Conference, 1-4, 2015.

16. Guney, K. and N. Sarikaya, "A hybrid method based on combining artificial neural network and fuzzy inference system for simultaneous computation of resonant frequencies of rectangular, circular and triangular microstrip antennas," IEEE Trans. Antenna Propag., Vol. 55, 659-668, 2007.
doi:10.1109/TAP.2007.891566

17. Kapetanakis, T. N., I. O. Vardiambasis, G. S. Liodakis, and A. Maras, "Solving the inverse loop antenna radiation problem using a hybrid neuro-fuzzy system," Telecommunications Forum, 1189-1192, 2012.

18. Gehani, A. and D. A. Pujara, "Predicting the return loss performance of a hexa-band PIFA using ANFIS," Microw. Opt. Technol. Lett., Vol. 57, 2072-2075, 2015.
doi:10.1002/mop.29277

19. Pujara, D. A., A. Modi, N. Pisharody, and J. Mehta, "Predicting the performance of pyramidal and corrugated horn antennas using ANFIS," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 293-296, 2014.
doi:10.1109/LAWP.2014.2305518

20. Guney, K. and N. Sarikaya, "Resonant frequency calculation for circular microstrip antennas with a dielectric cover using adaptive network-based fuzzy inference system optimized by various algorithms," Progress In Electromagnetics Research, Vol. 72, 279-306, 2007.
doi:10.2528/PIER07031302

21. Turkmen, M., S. Kaya, C. Yildiz, and K. Guney, "Adaptive neuro-fuzzy models for conventional coplanar waveguides," Progress In Electromagnetics Research B, Vol. 6, 93-107, 2008.
doi:10.2528/PIERB08031208

22. Sarikaya, N., K. Guney, and C. Yildiz, "Adaptive neuro-fuzzy inference system for the computation of the characteristic impedance and the effective permittivity of the micro-coplanar strip line," Progress In Electromagnetics Research B, Vol. 6, 225-237, 2008.
doi:10.2528/PIERB08031223

23. Jang, J.-S. R., "ANFIS: Adaptive-network-based fuzzy inference system," IEEE Transactions on System, Man and Cybernetics, Vol. 23, 665-685, 1993.
doi:10.1109/21.256541

24. ANSYS High Frequency Structure Simulator, 2015.

25. Kisi, O., J. Shiri, and B. Nikoofar, "Forecasting daily lake levels using artificial intelligence approaches," Computers & Geosciences, Vol. 41, 169-180, 2011.