Vol. 64
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-12-13
Range Migration Techniques for Short-Range MIMO Array Imaging
By
Progress In Electromagnetics Research Letters, Vol. 64, 111-117, 2016
Abstract
This paper presents a short-range imaging algorithm for multiple-input-multiple-output (MIMO) array. One of the steps in a previous method utilizes 2-D STOLT interpolation to transform 3-D data into 2-D data, which is not strict in the view of mathematical derivation and lack of physical meaning. The convolution operation which is analyzed by physical process of angular spectrum propagation is used to explain multi-static configuration and reduce the 3-D data into 2-D ones. This paper gives the physical phenomena of the whole process of imaging. We also explain the different physical meanings of FFT between transmitters and receivers. Numerical simulations show the consequence of STOLT interpolation in the previous algorithm and demonstrate the performance of the proposed algorithm.
Citation
Jing Yang, Xiaozhou Shang, and Zhi-Ping Li, "Range Migration Techniques for Short-Range MIMO Array Imaging," Progress In Electromagnetics Research Letters, Vol. 64, 111-117, 2016.
doi:10.2528/PIERL16090103
References

1. Kirschner, A. J., J. Guetlein, S. Bertl, et al. "A millimetre-wave MIMO radar system for threat detection in patrol or checkpoint scenarios," SPIE Security + Defence, International Society for Optics and Photonics, 85440I-85440I-11, 2012.

2. Chen, C. C. and H. Candrews, "Target-motion-induced radar imaging," IEEE Transactions on Aerospace & Electronic Systems, Vol. 16, No. 1, 2-14, 1980.
doi:10.1109/TAES.1980.308873

3. Greenwald, R. A., K. B. Baker, R. A. Hutchins, et al. "An HF phased-array radar for studying small-scale structure in the high-latitude ionosphere," Radio Science, Vol. 20, No. 1, 63-79, 1985.
doi:10.1029/RS020i001p00063

4. Li, J. and P. Stoica, "MIMO radar with colocated antennas," IEEE Signal Processing Magazine, Vol. 24, No. 5, 106-114, 2007.
doi:10.1109/MSP.2007.904812

5. Zhuge, X. and A. Yarovoy, "Near-field ultra-wideband imaging with two-dimensionalsparse MIMO array," Proc. 4th EuCAP, 1-4, Apr. 2010.

6. Cui, G., L. Kong, and J. Yang, "A back-projection algorithm to stepped-frequency synthetic aperture through-the-wall radar imaging," Asian and Pacific Conference on Synthetic Aperture Radar, 2007, Apsar 2007, 123-126, 2007.

7. Carrara, W. G., R. S. Goodman, and R. M. Majewski, Spotlight Synthetic Aperture Radar Signal Processing Algorithms, Artech House, Boston, MA, 1995.

8. Zhuge, X. and A. G. Yarovoy, "Three-dimensional near-field MIMO array imaging using range migration techniques," IEEE Transactions on Image Processing, Vol. 21, No. 6, 3026-33, 2012.
doi:10.1109/TIP.2012.2188036

9. Goodman, J. W. and M. E. Cox, Introduction to Fourier Optics, 2nd Ed., 66-73, McGraw-Hill, 1968.

10. Goodman, J. W. and M. E. Cox, Introduction to Fourier Optics, 2nd Ed., 32-42, McGraw-Hill, 1968.

11. Goodman, J. W. and M. E. Cox, Introduction to Fourier Optics, 2nd Ed., 55-61, McGraw-Hill, 1968.

12. Wang, H. J., "MIMO radar imaging algorithm,", National University of Defense Technology, 2010.

13. Dayi, F., R. Boehnke, M. Testar, et al. "Method for displaying an active radar image and handheld screening device,", US9223018[P], 2015.

14. Gonzalez-Valdes, B., Y. Alvarez, S. Mantzavinos, et al. "Improving security screening: A comparison of multistatic radar configurations for human body imaging," IEEE Antennas & Propagation Magazine, 1-1, 2016.
doi:10.1155/2016/1879287