Vol. 62
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-09-29
Design of a Compact Planar Quasi-Yagi Antenna with Enhanced Gain and Bandwidth Using Metamaterial
By
Progress In Electromagnetics Research Letters, Vol. 62, 125-131, 2016
Abstract
In this paper, a compact planar quasi-Yagi antenna with enhanced radiation characteristics is presented. The proposed structure is designed by incorporating metamaterial unit cells in place of conventional directors. Here, the technique used for directivity improvement is that the refractive index of the metamaterial is lower than that of the antenna substrate, which acts as a regular lens for beam focusing. Loading the quasi-Yagi antenna with metamaterial results in directivity as well as gain enhancement at the end-fire direction as compared to the quasi-Yagi antenna with directors. In addition, reduction in the overall size of the proposed quasi-Yagi antenna by 26.67% is achieved. An enhanced impedance bandwidth has also been noticed. The gain performance of the proposed antenna within the frequency band has been studied.
Citation
Moumita Sarkar, Rhitam Datta, Pujayita Saha, and Debasis Mitra, "Design of a Compact Planar Quasi-Yagi Antenna with Enhanced Gain and Bandwidth Using Metamaterial," Progress In Electromagnetics Research Letters, Vol. 62, 125-131, 2016.
doi:10.2528/PIERL16072504
References

1. Deal, W. R., N. Kaneda, J. Sor, Y. Qian, and T. Itoh, "A new quasi-Yagi antenna for planar active antenna arrays," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 6, 910-918, Jun. 2000.
doi:10.1109/22.846717

2. Qian, Y., W. R. Deal, N. Kaneda, and T. Itoh, "Microstirp-fed quasi-Yagi antenna with broadband characteristics," Electron. Lett., Vol. 34, No. 23, 2194-2196, Nov. 1998.
doi:10.1049/el:19981583

3. Lu, H.-D., L.-M. Si, and Y. Liu, "Compact planar microstrip-fed quasi-Yagi antenna," Electron. Lett., Vol. 48, No. 3, 140-141, Feb. 2012.
doi:10.1049/el.2011.3458

4. Wang, H., S.-F. Liu, W.-T. Li, and X.-W. Shi, "Design of a wideband planar microstrip-fed quasi-Yagi antenna," Progress In Electromagnetics Research Letters, Vol. 46, 19-24, 2014.

5. Lu, L., K. Ma, F. Meng, and K. S. Yeo, "Design of a 60-GHz quasi-Yagi antenna with novel ladder-like directors for gain and bandwidth enhancements," IEEE Antennas Wireless Propag. Lett., Vol. 15, 682-685, 2016.
doi:10.1109/LAWP.2015.2469139

6. Balanis, C. A., Antenna Theory Analysis and Design, 3rd Ed., John Wiley & sons, 2005.

7. Bemani, M. and S. Nikmehr, "A novel wide-band microstrip Yagi-Uda array antenna for WLAN applications," Progress In Electromagnetics Research, Vol. 16, 389-406, 2009.
doi:10.2528/PIERB09053101

8. Cai, R.-N., M.-C. Yang, S. Lin, X.-Q. Zhang, X.-Y. Zhang, and X.-F. Liu, "Design and analysis of printed Yagi-Uda antenna and two-element array for WLAN applications," International Journal of Antennas and Propagation, 1-8, 2Hindawi Publishing Corporation, Aug. 012.

9. Park, B.-Y., M.-H. Jeong, and S.-O. Park, "A miniaturized microstrip-to-coplanar-strip transition loaded with artificial transmission lines and 2.4-GHz antenna application," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1486-1489, 2014.
doi:10.1109/LAWP.2014.2341552

10. Hajizadeh, P., H. R. Hassani, and S. H. Sedighy, "Planar artificial transmission lines loading for miniaturization of RFID printed quasi-Yagi antenna," IEEE Antennas Wireless Propag. Lett., Vol. 12, 464-467, 2013.
doi:10.1109/LAWP.2013.2253540

11. Huang, H.-C., J.-C. Lu, and P. Hsu, "On the size reduction of planar Yagi-Uda antenna using parabolic reflector," Asia-Pacific Microwave Conference, Vol. 1, 1-3, 2015.

12. Chen, L., Z. Lei, R. Yang, J. Fan, and X. Shi, "A broadband artificial material for gain enhancement of antipodal tapered slot antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 1, 395-400, Jan. 2015.
doi:10.1109/TAP.2014.2365044

13. Smith, D. R., D. C. Vier, Th. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, No. 3, 036617, Mar. 2005.
doi:10.1103/PhysRevE.71.036617