Vol. 62
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-08-29
Polarization Conversion Metasurface for Broadband Radar Cross Section Reduction
By
Progress In Electromagnetics Research Letters, Vol. 62, 9-15, 2016
Abstract
A novel polarization conversion metasurface (PCM) is proposed and applied to radar cross section (RCS) reduction. The proposed design has the advantage of simple geometry while simultaneously reducing RCS over broadband. The metasurface is created by the combination of an oblique split ring resonator (SRR) and a cut-wire resonator, which is capable of converting a linear polarization state into its orthogonal one. The simulation results show that the 10 dB bandwidth of polarization conversion is obtained in wideband from 9.4 to 19.2 GHz, with an average polarization conversion ratio (PCR) of nearly 100%. Due to the high PCR, RCS reduction of 10 dB can be realized over 60% frequency bandwidth with respect to the equal-sized PEC ground plane. The maximum reduction is 32.8 dB. To validate the simulation results, prototypes of the PCM are fabricated and measured. Excellent agreement between simulations and measurements is achieved.
Citation
Wen Jiang, Yu Xue, and Shu-Xi Gong, "Polarization Conversion Metasurface for Broadband Radar Cross Section Reduction," Progress In Electromagnetics Research Letters, Vol. 62, 9-15, 2016.
doi:10.2528/PIERL16060504
References

1. Thakare, Y. B. and Rajkumar, "Design of fractal patch antenna for size and radar cross-section reduction," Microw. Antennas Propag., Vol. 4, No. 2, 175-181, Feb. 2010.
doi:10.1049/iet-map.2008.0325

2. Pan, W. B., C. Huang, P. Chen, X. L. Ma C.-G. Hu, and X.-G. Luo, "A low-RCS and high-gain partially reflecting surface antenna," IEEE Trans. on Antennas and Propag., Vol. 62, No. 2, 945-949, Feb. 2014.
doi:10.1109/TAP.2013.2291008

3. Costa, F. and A. Monorchio, "A frequency selective radome with wideband absorbing properties," IEEE Trans. on Antennas and Propag., Vol. 60, No. 6, 2740-2747, Jun. 2012.
doi:10.1109/TAP.2012.2194640

4. Li, Y. Q., H. Zhang, Y. Q. Fu, and N. C. Yuan, "RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 473-476, 2008.

5. Paquay, M., J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, "Thin AMC structure for radar cross-section reduction," IEEE Trans. on Antennas and Propag., Vol. 55, No. 12, 3630-3638, Dec. 2007.
doi:10.1109/TAP.2007.910306

6. De Cos, M. E., Y. Alvarez, and F. Las-Heras, "A novel approach for RCS reduction using a combination of artificial magnetic conductors," Progress In Electromagnetics Research, Vol. 107, 147-159, 2010.
doi:10.2528/PIER10060402

7. Iriarte, J. C., A. T. Pereda, J. L. M. de Falcon, I. Ederra, R. Gonzalo, and P. de Maagt, "Broadband radar cross-section reduction using AMC technology," IEEE Trans. on Antennas and Propag., Vol. 61, No. 12, 6136-6143, Dec. 2013.
doi:10.1109/TAP.2013.2282915

8. Chen, W. G., C. A. Balanis, and C. R. Birtcher, "Checkerboard EBG surfaces for wideband radar cross section reduction," IEEE Trans. on Antennas and Propag., Vol. 63, No. 6, 2636-2645, Jun. 2015.
doi:10.1109/TAP.2015.2414440

9. Zheng, Y. J., J. Gao, X.-Y. Cao, Z.-D. Yuan, and H.-H. Yang, "Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1582-1585, 2015.
doi:10.1109/LAWP.2015.2413456

10. Liu, Y., K. Li, Y.-T. Jia, Y.-W. Hao, S. X. Gong, and Y. J. Guo, "Wideband RCS reduction of a slot array antenna using polarization conversion metasurface," IEEE Trans. on Antennas and Propag., Vol. 64, No. 1, 326-331, Jan. 2016.
doi:10.1109/TAP.2015.2497352

11. Jia, Y.-T., Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, "Broadband polarization rotation reflective surfaces and their applications to RCS reduction," IEEE Trans. on Antennas and Propag., Vol. 64, No. 1, 179-188, Jan. 2016.
doi:10.1109/TAP.2015.2502981

12. Liu, Y., Y.-W. Hao, K. Li, and S. X. Gong, "Radar cross section reduction of a microstrip antenna based on polarization conversion metamaterial," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 80-83, 2016.
doi:10.1109/LAWP.2015.2430363

13. Grady, N. K., J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, "Terahertz metamaterials for linear polarization conversion and anomalous refraction," Science, Vol. 340, 1304-1307, Jun. 2013.
doi:10.1126/science.1235399

14. Gao, X., X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, "Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface," IEEE Trans. on Antennas and Propag., Vol. 63, No. 8, 3522-3530, Aug. 2015.
doi:10.1109/TAP.2015.2434392

15. Yu, N.-F., P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, 333-337, Oct. 2011.