Vol. 60
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-05-11
A Broadband GCPW to Stripline Vertical Transition in LTCC
By
Progress In Electromagnetics Research Letters, Vol. 60, 17-21, 2016
Abstract
Vertical transition structure between grounded coplanar waveguide (GCPW) and stripline by Low Temperature Co-fired Ceramic (LTCC) technology is presented in this paper. In this structure, the top ground of the stripline is used as the GCPW lower ground, while the signal via goes through the middle ground plane. With increasing vertical signal via height, it can be more widely used in the higher height of multilayer System in Package (SiP) module packaging. The circular openings in the ground plane and additional shield vias around the transmission lines can provide great advantage in the radiation loss and decrease parasitic effects. The measurement results show that the return loss is less than -10 dB from 6 GHz to 35 GHz. Meanwhile, the insertion loss is better than -2 dB up to 28.4 GHz.
Citation
Bo Zhang, Dong Li, Weihong Liu, and Lin Du, "A Broadband GCPW to Stripline Vertical Transition in LTCC," Progress In Electromagnetics Research Letters, Vol. 60, 17-21, 2016.
doi:10.2528/PIERL16031005
References

1. Lee, Y. C. and C. S. Park, "A novel CPW-to-stripline vertical via transition using a stagger via structure and embedded air cavities for v-band LTCC SiP applications," Proc. Asia-Pacific Microw. Conf., Vol. 2, 2728-2731, 2005.

2. Simon, W., R. Kulke, A. Wien, I.Wolff, S. Baker, R. Powell, and M. Harrison, "Design of passive components for K-band communication modules in LTCC environment," IMAPS Symposium, 183-188, Chicago, 1999.

3. Marynowski, W. and J. Mazur, "Investigation of multilayer magic-T configurations using novel microstrip-slotline transitions," Progress In Electromagnetics Research, Vol. 129, 91-108, 2012.
doi:10.2528/PIER12032303

4. Costanzo, S., "Synthesis of multi-step coplanar waveguide-to-microstrip transition," Progress In Electromagnetics Research, Vol. 113, 111-126, 2011.
doi:10.2528/PIER10112908

5. Heyen, J., T. von Kerssenbrock, A. Chernyakov, P. Heide, and A. F. Jacob, "Novel LTCC/BGA modules for highly integrated millimeter-wave transceivers," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 12, 2589-2596, 2003.
doi:10.1109/TMTT.2003.819210

6. Xu, X., Q.-B. Huang, Z.-X. Zhu, H. Xu, and B. Zhang, "Novel design for microstrip to stripline transitions for millimeter-wave application in LTCC," Acta Astronautica, Vol. 104, No. 1, 256-259, 2014.
doi:10.1016/j.actaastro.2014.08.003

7. Panther, A., C. Glaser, M. G. Stubbs, and J. S. Wight, "Vertical transitions in low temperature co-fired ceramics for LMDS applications," IEEE MTT-S Digest, 1907-1910, 2001.

8. Gamez-Machodo, A., D. Valdes-Martin, A. Asensio-Lopez, and M. J. Gismero, "Microstrip-to-stripline planar transitions on LTCC," Microwave Workshop Series on Millimeter Wave Integration Technologies (IMWS), 1-4, 2011.
doi:10.1109/IMWS3.2011.6061875

9. Nair, D. M., W. E. McKinzie III, B. A. Thrasher, M. A. Smith, E. D. Hughes, and J. M. Parisi, "A 10MHz to 100 GHz LTCC CPW-to-stripline vertical transition," IEEE Intl. Microwave Symp., 1-4, Seattle, WA, 2013.

10. Amaya, R. E., M. Li, K. Hettak, and C. J. Verver, "A broadband 3D vertical microstrip to stripline transition in LTCC using a quasi-coaxial structure for millimetre-wave SOP applications," 40th European Microwave Conference, 109-112, Paris, 2010.