Vol. 59
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-04-08
A Novel Compact Feeding Network for Array Antenna
By
Progress In Electromagnetics Research Letters, Vol. 59, 101-107, 2016
Abstract
A novel feeding network is investigated both theoretically and experimentally. The proposed system with combination of a Wilkinson power divider and two branch-Line couplers is established. The output signals of the system have the same amplitude and 900 phase difference with each other. The size reduction technique is applied to minimize the physical size of the proposed network. In this technique, the ground of the structure is defected, and distributed capacitors and inductors are added to empty space of the branch-line couplers. Moreover, meandered lines are used in order to match the output impedance of the Wilkinson power divider arms and reduce its size. The initial design realized in 2.5 GHz shows the fractional bandwidth of 24%. Then a miniaturized structure is fabricated with 42% smaller size than the main structure while it shows similar electrical performance. For both cases, measurement and simulation results are in good agreement with each other.
Citation
Pejman Mohammadi, Asrin Piroutiniya, and Mohamad Hosein Rasekhmanesh, "A Novel Compact Feeding Network for Array Antenna," Progress In Electromagnetics Research Letters, Vol. 59, 101-107, 2016.
doi:10.2528/PIERL16021004
References

1. Huang, J., "A Ka-band circularly polarized high-gain microstrip array antenna," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 1, 113-116, Jan. 1995.
doi:10.1109/8.366361

2. Maddio, S., "A compact wideband circularly polarized antenna array for C-band applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1081-1084, Dec. 2015.
doi:10.1109/LAWP.2015.2392387

3. Mohammadi, P. and V. Rafii, "High gain and broadband circularly polarized square slot antenna array," Progress In Electromagnetics Research Letters, Vol. 43, 105-113, 2013.
doi:10.2528/PIERL13080701

4. Chung, K. L., "High-performance circularly polarized antenna array using metamaterial-line based feed network," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 12, 6233-6237, Dec. 2013.
doi:10.1109/TAP.2013.2282296

5. Pozar, D. M., Microwave Engineering, John Wiley & Sons Press, 2005.

6. Tang, C. W. and M. G. Chen, "Miniaturized microstrip branch-line couplers with the approach of p-model," Microw. Opt. Tech. Lett., Vol. 50, No. 2, 314-316, 2008.
doi:10.1002/mop.23061

7. Liao, S., P. T. Sun, N. C. Chin, and J. T. Peng, "A novel compact-size branch-line coupler," IEEE Microw. Wirel. Compon. Lett., Vol. 15, No. 9, 588-509, 2005.
doi:10.1109/LMWC.2005.855378

8. Tang, C. W., M. G. Chen, and C. H. Tsai, "Miniaturization of microstrip branch-line coupler with dual transmission lines," IEEE Microw. Wirel. Compon. Lett., Vol. 18, No. 3, 185-187, 2008.
doi:10.1109/LMWC.2008.916798

9. Liao, S. and J. T. Peng, "Compact planar microstrip branch-line couplers using the quasi-lumped elements approach with nonsymmetrical and symmetrical T-shaped structure," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 9, 3508-3514, 2006.
doi:10.1109/TMTT.2006.880650

10. Wang, C. W., T. G. Ma, and C. F. Yang, "A new planar artificial transmission line and its applications to a miniaturized Butler matrix," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 12, 2792-2801, 2007.
doi:10.1109/TMTT.2007.909474

11. Ghali, H. and T. A. Moselhy, "Miniaturized fractal rat-race, branch-line, and coupled-line hybrids," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 11, 2513-2520, 2004.
doi:10.1109/TMTT.2004.837154

12. Eslamloo, M. K., P. Mohammadi, and M. Khoubrou, "Miniaturized wideband branch-line hybrid coupler with capacitive effect and defected ground structure (DGS)," Indian Journal of Science and Technology, Vol. 8, No. 35, December 2015.
doi:10.17485/ijst/2015/v8i35/71911

13. Esa, M., N. Philip, I. P. Pohan, and N. A. Murad, "Miniaturized microwave meander coupled-line two-way wilkinson power divider," International Symposium on Antennas and Propagation-ISAP, 2006.

14. Betancourt, D. and C. Del Ro, "Designing feeding networks with CORPS: Coherently radiating periodic structures," Microwave and Optical Technology Letters, Vol. 48, No. 8, August 2006.
doi:10.1002/mop.21697

15. Panduro, M. A., "Design of beam-forming Networks for Scannable multi-beam antenna arrays using CORPS," Progress In Electromagnetics Research, Vol. 84, 173-188, 2008.
doi:10.2528/PIER08070403

16. Fakoukakis, F. E. and G. A. Kyriacou, "Novel nolen matrix based beamforming networks for series-fed low SLL multibeam antennas," Progress In Electromagnetics Research B, Vol. 51, 33-64, 2013.
doi:10.2528/PIERB13011605

17. Gruszczyski, S., K. Wincza, and K. Sachse, "Reduced sidelobe four-beam N-element antenna arrays fed by 4N butler matrices," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 2006.