Vol. 58
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-01-18
Hilbert Curve Fractal Antenna for Dual on- and off -Body Communication
By
Progress In Electromagnetics Research Letters, Vol. 58, 81-88, 2016
Abstract
We present a Hilbert curve fractal antenna operating at 2.45 GHz ISM and 5.5 GHz WLAN bands. The proposed antenna employs a third-order Hilbert curve and two shorting vias for antenna miniaturization and dual-band/mode operation. At 2.45 GHz, the antenna exhibits a monopole-like radiation pattern, while at 5.5 GHz, it provides a broadside radiation pattern, suitable for simultaneous on- and off-body communication using two distinct frequency bands. The antenna foot print is as small as 25.5 mm×25.5 mm. Simulation and measurement results demonstrate that the antenna gain is more than 1.9 dBi if the antenna is mounted on a ground larger than 40 mm×40 mm. The effect of human body presence on antenna performance was investigated by means of full-wave simulations locating the antenna on a human body phantom. It is shown that the proposed antenna is capable of maintaining its free-space performance over the human body phantom except for the gain reduction of 2.5 dBi at 5.5 GHz band.
Citation
Susilo Ady Saputro, and Jae-Young Chung, "Hilbert Curve Fractal Antenna for Dual on- and off -Body Communication," Progress In Electromagnetics Research Letters, Vol. 58, 81-88, 2016.
doi:10.2528/PIERL15111107
References

1. Cavallari, R., F. Martelli, R. Rosini, C. Buratti, and R. Verdone, "Survey on wireless body area networks: Technologies and design challenges," IEEE Comm. Surveys Tutor., Vol. 16, No. 3, 1635-1657, Third Quarter, 2014.
doi:10.1109/SURV.2014.012214.00007

2. Li, M., S. Q. Xiao, and B. Z. Wang, "Pattern-reconfigurable antenna for on-body communication," Proc. IMWS-BIO, 1-3, 2013.

3. Scott, H. and V. F. Fusco, "Antenna array beam-steering by the integration of a series phase shifter," Proc. High Freq. Postgrad. Stu. Colloq., 25-29, 2001.
doi:10.1109/HFPSC.2001.962154

4. Yusuf, Y. and X. Gong, "Low-cost patch antenna phased array with analog beam steering using mutual coupling and reactive loading," IEEE Antennas Wirel. Propag. Lett., Vol. 7, 81-84, 2008.
doi:10.1109/LAWP.2008.916689

5. Lim, I. and S. Lim, "Monopole-like and boresight pattern reconfigurable antenna," IEEE Trans. Antennas Propag., Vol. 61, No. 12, 5854-5859, Dec. 2013.
doi:10.1109/TAP.2013.2283926

6. Lee, S. W. and Y. Sung, "A polarization diversity patch antenna with reconfigurable feeding network," J. Electromagn. Eng. Sci., Vol. 15, No. 2, 115-119, Apr. 2015.
doi:10.5515/JKIEES.2015.15.2.115

7. Nessel, J. A., A. J. Zaman, and F. A. Miranda, "A miniaturized antenna for surface-to-surface and surface-to-orbiter applications," Microw. Opt. Tech. Lett., Vol. 48, No. 5, 859-862, Mar. 2006.
doi:10.1002/mop.21499

8. Patel, M. and J. Wang, "Applications, challenges, and prospective in emerging body area networking technologies," IEEE Trans. Wirel. Commu., Vol. 17, No. 1, 80-88, Feb. 2010.
doi:10.1109/MWC.2010.5416354

9. Anguera, J., C. Puente, and J. Soler, "Miniature monopole antenna based on fractal Hilbert curve," Proc. IEEE Antennas Propag. - Soc. Int. Symp., Vol. 4, 546-549, 2002.
doi:10.1109/APS.2002.1017043

10. Vinoy, K. J., K. A. Jose, V. K. Varadan, and V. V. Varadan, "Resonant frequency of Hilbert curve fractal antennas," Proc. Antennas Propag. - Soc. Int. Symp., Vol. 3, 648-651, 2001.

11. Azaro, R., F. Viani, L. Lizzi, E. Zeni, and A. Massa, "A monopolar quad-band antenna based on a Hilbert self-affine prefractal geometry," IEEE Antennas Wirel. Propag. Lett., Vol. 8, 177-180, 2009.
doi:10.1109/LAWP.2008.2001428

12. Sinha, S. N. and M. Jain, "A self-affine fractal multiband antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 6, 110-112, 2007.
doi:10.1109/LAWP.2007.891519

13. Mahatthanajatuphat, C., P. Akkaraekthalin, S. Saleekaw, and M. Krairiksh, "A bidirectional multiband antenna with modified fractal slot fed by CPW," Progress In Electromagnetics Research, Vol. 95, 59-72, 2009.
doi:10.2528/PIER09061603

14. Wang, Z., L. Z. Lee, D. Psychoudakis, and J. L. Volakis, "Embroidered multiband body-worn antenna for GSM/PCS/WLAN communications," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 3321-3329, Jun. 2014.
doi:10.1109/TAP.2014.2314311

15. See, T. S. P. and Z. N. Chen, "Experimental characterization of UWB antennas for on-body communications," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 866-874, Apr. 2009.
doi:10.1109/TAP.2009.2014595

16. Christ, A., A. Klingenbock, T. Samaras, C. Goiceanu, and N. Kuster, "The dependence of electromagnetic far-field absorption on body tissue composition in the frequency range from 300MHz to 6 GHz," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 5, 2188-2195, May 2006.
doi:10.1109/TMTT.2006.872789

17. Inst. of Appl. Phys. "Calculation of the dielectric properties of body tissues in the frequency range 10 Hz-100 GHz,", Italian Nat. Res. Council, Florence, Italy, [Online] Available: http://niremf.ifac.cnr.it/tissprop/.

18. Ryckaert, J., P. De Doncker, R. Meys, A. de Le Hoye, and S. Donnay, "Channel model for wireless communication around human body," IEEE Electron. Lett., Vol. 40, No. 9, 543-544, Apr. 2004.
doi:10.1049/el:20040386

19. Conway, G. A. and W. G. Scanlon, "Antennas for over-body-surface communication at 2.45 GHz," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 844-855, Apr. 2009.
doi:10.1109/TAP.2009.2014525

20. Hall, P. S., Y. Hao, Y. I. Nechayev, A. Alomainy, C. C. Constantinou, C. Parini, M. R. Kamarudin, T. Z. Salim, D. T.M. Hee, R. Dubrovka, A. S. Owadally, S.Wei, A. Serra, P. Nepa, M. Gallo, and M. Bozzetti, "Antennas and propagation for on-body communication systems," IEEE Antennas Propag. Mag., Vol. 49, No. 3, 41-58, Jun. 2007.
doi:10.1109/MAP.2007.4293935