Vol. 57
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-11-02
Analysis of RWPT Relays for Intermediate-Range Simultaneous Wireless Information and Power Transfer System
By
Progress In Electromagnetics Research Letters, Vol. 57, 111-116, 2015
Abstract
The increasing sophisticated power and communication demands have motivated a variety of research on simultaneous wireless information and power transfer system, aiming to provide higher power transfer efficiency and improved communication rate. This letter demonstrates that resonant wireless power transfer system with relays can be a candidate to reach these aims. Based on coupled resonator filter theory, mathematical equations for transmission efficiency and bandwidth are derived for arbitrary number of relays. Improved efficiency and bandwidth are verified by equations, simulation and experiments. Experimental results show that under the distance of two times the diameter of the resonator, system efficiency increases from 5.43% (no relay) to 29.47% (one relay) and 38.02% (two relays), with the fractional bandwidth broadened from 1.33% (no relay) to 3.31% (one relay) and 4.47% (two relays) at operation frequency of 42.55 MHz, providing available channel for simultaneous power and data transfer. The procedure for the design of relays is also listed in detail.
Citation
Keke Ding, Ying Yu, and Hong Lin, "Analysis of RWPT Relays for Intermediate-Range Simultaneous Wireless Information and Power Transfer System," Progress In Electromagnetics Research Letters, Vol. 57, 111-116, 2015.
doi:10.2528/PIERL15091404
References

1. Huang, K. and E. Larsson, "Simultaneous information and power transfer for broadband wireless systems," IEEE Transactions on Signal Processing, Vol. 61, No. 23, 5972-5986, December 2013.
doi:10.1109/TSP.2013.2281026

2. Wu, J., C. Zhao, J. Du, Z. Lin, Y. Hu, and X. He, "Wireless power and data transfer via a common inductive link using frequency division multiplexing," IEEE Transactions on Industrial Electronics, 2015.

3. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Sci. Exp., Vol. 317, No. 5834, 83-86, June 2007.

4. RamRakhyani, A. K. and G. Lazzi, "On the design of efficient multi-coil telemetry system for biomedical implants," IEEE Transactions on Biomedical Circuits and Systems, Vol. 7, No. 1, 11-23, February 2013.
doi:10.1109/TBCAS.2012.2192115

5. Zhong, W. X., C. K. Lee, and S. Y. R. Hui, "General analysis on the use of tesla’s resonators in domino forms for wireless power transfer," IEEE Trans. Ind. Electron., Vol. 60, No. 1, 261-270, January 2013.
doi:10.1109/TIE.2011.2171176

6. Luo, B., S. Wu, and N. Zhou, "Flexible design method for multi-repeater wireless power transfer system based on coupled resonator bandpass filter model," IEEE Trans. Circuit Syst., Vol. 61, No. 11, 3288-3297, November 2014.
doi:10.1109/TCSI.2014.2327331

7. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley, New York, 2001.
doi:10.1002/0471221619

8. Awai, I. and T. Komori, "A simple and versatile design method of resonator-coupled wireless power transfer system," Proc. 2010 ICCCAS, 616-620, July 2010.

9. Sun, E. Y. and S. H. Chao, "Unloaded Q measurement-the critical-points method," IEEE Transactions on Microwave Theory and Techniques, Vol. 4, No. 8, 1983-1986, August 1995.