Vol. 56
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-09-02
Via-Hole Less Broadband Conductor-Backed Coplanar Waveguide to Coupled Microstrip Transition Up to 40 GHz
By
Progress In Electromagnetics Research Letters, Vol. 56, 47-51, 2015
Abstract
A broadband via-hole less transition from a conductor-backed coplanar waveguide (CBCPW) to a parallel coupled microstrip line (CMS) via microstrip section (MS) is reported in this paper that is realized on a MCL FX-2 substrate (100 μm thick). This transition should find a wide variety of applications due to its demonstrated broadband (from 4.5 GHz up to 39.5 GHz) behavior, ease of fabrication, and low manufacturing cost. In addition, utilization of the MS section between the CBCPW and CMS sections allows putting ground electrode in a different plane than the signal electrodes. This exibility made possible by electromagnetic field coupling between the bottom and top ground planes simplifies the transition manufacturing and facilitates the characterization of optical components driven with CMS line using coplanar probes.
Citation
Massinissa Hadjloum, Mohammed El-Gibari, Stephane Ginestar, Hongwu Li, and Afshin S. Daryoush, "Via-Hole Less Broadband Conductor-Backed Coplanar Waveguide to Coupled Microstrip Transition Up to 40 GHz ," Progress In Electromagnetics Research Letters, Vol. 56, 47-51, 2015.
doi:10.2528/PIERL15060404
References

1. Garcia-Garcia, J., F. Martin, F. Falcone, J. Bonache, I. Gil, T. Lopetegi, M. A. G. Laso, M. Sorolla, and R. Marques, "Spurious passband suppression in microstrip coupled line band pass filters by means of split ring resonators," IEEE Microw. Wirel. Compon. Lett., Vol. 14, No. 9, 416-418, 2014.
doi:10.1109/LMWC.2004.832066

2. Islam, R., F. Elek, and G. V. Eleftheriades, "Coupled-line metamaterial coupler having co-directional phase but contra-directional power flow," Electron. Lett., Vol. 40, No. 5, 315-315, 2004.
doi:10.1049/el:20040197

3. Hadjloum, M., M. El Gibari, H. W. Gundel, H. W. Li, and A. S. Daryoush, "Ultra-wideband GCPW-CMS-GCPW transition for characterization of all-optical ADCs based on leaky waveguide deflector," 21st Telecommunications Forum (TELFOR), 356-359, 2014.

4. Anagnostou, D. E., M. Morton, J. Papapolymerou, and C. G. Christodoulou, "A 0-55-GHz coplanar waveguide to coplanar strip transition," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 1, 1-6, 2008.
doi:10.1109/TMTT.2007.911909

5. Butrym, A. and S. Pivnenko, "CPW to CPS transition for feeding UWB antennas," Ultrawideband and Ultrashort Impulse Signals, Second International Workshop, 107-108, 2004.
doi:10.1109/UWBUS.2004.1388063

6. Kim, S., S. Jeong, Y. T. Lee, D. H. Kim, J. S. Lim, K. S. Seo, and S. Nam, "Ultra-wideband (from DC to 110 GHz) CPW to CPS transition," Electron. Lett., Vol. 8, No. 13, 622-623, 2002.
doi:10.1049/el:20020423

7. Yu, D. and R. Zhu, "A new wideband vertical transition between coplanar waveguide and coplanar stripline," PIERS Proceedings, Beijing, China, Mar. 23-27, 2009.

8. Li, K., D. Kurita, and T. Matsui, "An ultra-wideband bandpass filter using broadside-coupled microstrip-coplanar waveguide structure, in microwave symposium digest," 2005 IEEE MTT-S international, 675-678, 2005.

9. Mao, S. G., C. T. Hwang, R. B. Wu, and C. H. Chen, "Analysis of coplanar waveguide-to-coplanar stripline transitions," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 1, 23-29, 2000.
doi:10.1109/22.817468

10. Wu, P., Z. Wang, and Y. Zhang, "Wideband planar balun using microstrip to CPW and microstrip to CPS transitions," Electron. Lett., Vol. 46, No. 24, 1611-1613, 2010.
doi:10.1049/el.2010.1791

11. El-Gibari, M., D. Averty, C. Lupi, H. Li, and S. Toutain, "Ultra-wideband GCPW-MS transitions for characterising microwave and photonic components based on thin polymer," Electron. Lett., Vol. 47, No. 9, 553-555, 2011.
doi:10.1049/el.2010.3745