Vol. 50
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-11-28
A Broadband Reflectarray Using Phoenix Unit Cell
By
Progress In Electromagnetics Research Letters, Vol. 50, 67-72, 2014
Abstract
In this letter, a novel broadband single-layer reflectarray element composed of a circular patch and double circular ring is presented. The element in the reflectarray provides a nearly 360° linear phase range and has rebirth capability. The broadband characteristic of this reflectarray is obtained due to the sub-wavelength of the element space and the combination of two resonators of complementary size on a single layer. Then, a prime-focus 225-element microstrip reflectarray with this phoenix cell has been designed and implemented. The measured gain is 22 dBi with 1 dB drop within 29% bandwidth at the center frequency of 10 GHz.
Citation
Chao Tian, Yong-Chang Jiao, and Wei-Long Liang, "A Broadband Reflectarray Using Phoenix Unit Cell," Progress In Electromagnetics Research Letters, Vol. 50, 67-72, 2014.
doi:10.2528/PIERL14093003
References

1. Li, H., B. Z. Wang, and W. Shao, "Novel broadband reflectarray antenna with compound-cross-loop elements for millimeter-wave application," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1333-1340, 2007.
doi:10.1163/156939307783239528

2. Huang, J. and A. Feria, "A one-meter X-band inflatable reflectarray antenna," Microwave and Optical Technology Letters, Vol. 20, 97-99, Jan. 1999.
doi:10.1002/(SICI)1098-2760(19990120)20:2<97::AID-MOP4>3.0.CO;2-K

3. Tsai, F.-C. E. and M. E. Bialkowski, "Designing a 161-element Ku-band microstrip reflectarray of variable size patches using an equivalent unit cell waveguide approach," IEEE Transactions on Antennas Propagation, Vol. 51, No. 10, 2953-2962, Oct. 2003.
doi:10.1109/TAP.2003.818001

4. Carrasco, E., M. Barba, and J. A. Encinar, "Reflectarray element based on aperture-coupled patches with slots and lines of variable length," IEEE Transactions on Antennas Propagation, Vol. 55, No. 3, 820-825, Mar. 2007.
doi:10.1109/TAP.2007.891863

5. Encinar, J. A. and J. A. Zornoza, "Broadband design of three-layer printed reflectarrays," IEEE Transactions on Antennas Propagation, Vol. 51, No. 7, 1662-1664, Jul. 2003.
doi:10.1109/TAP.2003.813611

6. Encinar, J. A., "Design of two-layer printed reflectarrays using patches of variable size," IEEE Transactions on Antennas Propagation, Vol. 49, No. 10, 1403-1410, Oct. 2001.
doi:10.1109/8.954929

7. Chaharmir, M. R., J. Shaker, M. Cuhaci, and A. Ittipiboon, "A broadband reflectarray antenna with double square rings," Microwave and Optical Technology Letters, Vol. 48, No. 7, 1317-1320, Jul. 2006.
doi:10.1002/mop.21630

8. Hamed, H., M. Kamyab, and A. Mirkamali, "Broadband reflectarray antenna incorporating disk elements with attached phase-delay lines," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 156-158, 2010.

9. Li, Y. Z., M. E. Bialkowski, and A. M. Abbosh, "Single layer reflectarray with circular rings and open-circuited stubs for wideband operation," IEEE Transactions on Antennas Propagation, Vol. 60, No. 9, 4183-4189, Sep. 2012.
doi:10.1109/TAP.2012.2207060

10. Ren, L.-S., Y.-C. Jiao, F. Li, J.-J. Zhao, and G. Zhao, "A novel double-petal loop element for broadband reflectarray," Progress In Electromagnetics Research Letters, Vol. 20, 157-163, Feb. 2011.

11. Vita, P. D., A. Freni, and P. Pirinoli, "A novel broadband single layer printed reflectarray antenna," 2007 IEEE Antennas and Propagation Society International Symposium, 1449-1452, 2007.
doi:10.1109/APS.2007.4395778

12. Li, Q. Y., Y. C. Jiao, and G. Zhao, "A novel microstrip rectangular patch/ring combination reflectarray element and its application," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1119-1122, Oct. 2009.

13. Moustafa, L., R. Gillard, F. Peris, et al. "The Phoenix eell: A new reflectarray cell with large bandwidth and rebirth capabilities," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 71-74, Mar. 2011.
doi:10.1109/LAWP.2011.2108633

14. Zhao, G., Y. C. Jiao, F. Zhang, and F. S. Zhang, "A subwavelength element for broadband circularly polarized reflectarrays," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 330-333, Oct. 2010.