Vol. 48
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-08-08
Tailoring the Properties of Photonic Nanojets by Changing the Material and Geometry of the Concentrator
By
Progress In Electromagnetics Research Letters, Vol. 48, 7-13, 2014
Abstract
Some microobjects can concentrate an incoming incident plane wave and create the socalled photonic nanojets. These highly focused emerging beams have a high intensity and can be used in applications such as microscopy, beam manipulation and imaging. In this article, it is shown that an adequate choice of geometric shape and material can lead to an improvement of the electric field enhancement capability of nanojets by a factor of 40%.
Citation
Abdul Khaleque, and Ziyuan Li, "Tailoring the Properties of Photonic Nanojets by Changing the Material and Geometry of the Concentrator," Progress In Electromagnetics Research Letters, Vol. 48, 7-13, 2014.
doi:10.2528/PIERL14052108
References

1. Choi, S. J., K. Djordjev, and J. Dapkus, "Microdisk lasers vertically coupled to output waveguides," IEEE Phot. Technol. Lett., Vol. 15, 1330-1332, 2003.
doi:10.1109/LPT.2003.817990

2. Fujita, M., A. Sakai, and T. Baba, "Ultra-small and ultra-low threshold microdisk laser — Design, fabrication, lasing characteristics and spontaneous emission factor," IEEE J. Sel. Top. Quantum Electron., Vol. 5, 673-681, 1999.
doi:10.1109/2944.788434

3. Seassal, C., C. Monat, J. Mouette, E. Touraille, B. Ben Bhakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitc, "InP bonded membrane photonic components and circuits: Towards 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. in Quantum Electron., Vol. 11, 395-407, 2005.
doi:10.1109/JSTQE.2005.845621

4. Levi, A. F. J., R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, "Directional light coupling from microdisk lasers," Appl. Phys. Lett., Vol. 62, 561-563, 1993.
doi:10.1063/1.108911

5. Park, H. G., J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, and Y. H. Lee, "Characteristics of modified single-defect two-dimensional photonic crystal lasers," IEEE J. Quantum Electron., Vol. 38, 1353-1365, 2002.
doi:10.1109/JQE.2002.802951

6. Loncar, M. and A. Scherer, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett., Vol. 82, 4648-4650, 2003.
doi:10.1063/1.1586781

7. Hattori, H. T., I. McKerracher, H. H. Tan, C. Jagadish, and R. M. De La Rue, "In-plane coupling of light from InP based photonic crystal band-edge lasers into single-mode waveguides," IEEE J. Quantum Electron., Vol. 43, 279-286, 2007.
doi:10.1109/JQE.2006.890402

8. Yokohama, M. and S. Noda, "Finite-difference time-domain simulation of two-dimensional photonic crystal surface emitting laser," Opt. Express, Vol. 13, 2869-2880, 2005.
doi:10.1364/OPEX.13.002869

9. Hattori, H. T., X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, "Analysis of hybrid photonic crystal vertical cavity surface emitting lasers," Opt. Express, Vol. 11, 1799-1808, 2003.
doi:10.1364/OE.11.001799

10. Hill, M. T., M. Marell, E. S. P. Leong, B. Smallbrugge, Y. Zhu, M. Sun, P. J. Van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Notzel, C. Z. Ning, and M. K. Smit, "Lasing in metalinsulator-metal sub-wavelength plasmonic waveguides," Opt. Express, Vol. 17, 11107-11112, 2009.
doi:10.1364/OE.17.011107

11. Stockman, M. I., "Spaser action, loss compensation and stability in plasmonic systems with gain," Phys. Rev. Lett., Vol. 106, 156802, 2011.
doi:10.1103/PhysRevLett.106.156802

12. Cubukcu, E., N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, "Plasmonic laser antennas and related devices," IEEE J. Sel. Top. in Quantum Electron., Vol. 14, 1448-1461, 2008.
doi:10.1109/JSTQE.2007.912747

13. Hattori, H. T., Z. Li, D. Liu, I. D. Rukhlenko, and M. Premaratne, "Coupling of light from microdisk lasers into plasmonic nano-antennas," Opt. Express, Vol. 17, 20878-20884, 2009.
doi:10.1364/OE.17.020878

14. Ball, G. A. and W. M. Morey, "Continuously tunable single-mode erbium fiber laser," Opt. Letters, Vol. 19, 1979-1981, 1994.
doi:10.1364/OL.19.001979

15. Zyskind, J. L., V. Mizrahi, D. J. Di Giovanni, and J. W. SUlhoff, "Short single frequency erbiumdoped fibre laser," Electron. Lett., Vol. 28, 1385-1387, 1992.
doi:10.1049/el:19920881

16. Agrawal, G. P. and S. Radic, "Phase-shifted fiber Bragg grating and their applications for wavelength demultiplexing," IEEE Phot., Technol. Lett., Vol. 6, 995-997, 1994.
doi:10.1109/68.313074

17. Cazo, R. M., O. Lisboa, H. T. Hattori, V. M. Schneider, C. L. Barbosa, R. C. Rabelo, and J. L. S. Ferreira, "Experimental analysis of reflected modes in a multimode strained grating," Microw. and Opt. Technol. Lett., Vol. 28, 4-8, 2001.
doi:10.1002/1098-2760(20010105)28:1<4::AID-MOP2>3.0.CO;2-1

18. Oullette, F., "All-fiber filter for efficient dispersion compensation," Opt. Letters, Vol. 16, 303-305, 1991.
doi:10.1364/OL.16.000303

19. Hattori, H. T., V. M. Schneider, and O. Lisboa, "Cantor set fiber Bragg grating," J. of Opt. Soc. America A, Vol. 17, 1583-1589, 2000.
doi:10.1364/JOSAA.17.001583

20. Barcelos, S., M. N. Zervas, and . I. Laming, "Characteristics of chirped fiber gratings for dispersion compensation," Opt. Fiber Technol., Vol. 1, 213-215, 1996.
doi:10.1006/ofte.1996.0026

21. Archambault, J. L., P. S. Russell, S. Barcelos, P. Hua, and L. Reekie, "Grating frustrated coupler: A novel channel-dropping filter in single-mode optical fiber," Opt. Letters, Vol. 19, 180-182, 1994.
doi:10.1364/OL.19.000180

22. Tailaert, D., W. Bogaerts, P. Bienstman, T. F. Krausss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron., Vol. 38, 949-955, 2002.
doi:10.1109/JQE.2002.1017613

23. Heifetz, A., S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, "Photonic nanojets," J. Comput. Theor. Nanosci., Vol. 6, 1979-1992, 2009.
doi:10.1166/jctn.2009.1254

24. Ferrand, P., J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, "Direct imaging of photonic nanojets," Opt. Express, Vol. 16, 6930-6940, 2008.
doi:10.1364/OE.16.006930

25. Heifetz, A., K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett., Vol. 89, 221118, 2006.
doi:10.1063/1.2398907

26. Fletcher, D. A., K. E. Goodson, and G. S. Kino, "Focusing in microlenses close to a wavelength in diameter," Opt. Letters, Vol. 26, 399-401, 2001.
doi:10.1364/OL.26.000399

27. Chen, Z., A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique," Opt. Express, Vol. 12, 1214-1220, 2004.
doi:10.1364/OPEX.12.001214

28. Li, X., Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets," Opt. Express, Vol. 13, 526-533, 2005.
doi:10.1364/OPEX.13.000526

29. Kim, M. S., T. Scharf, S. Muhlig, C. Rockstuhl, and H. P. Herzig, "Engineering photonic nanojets," Opt. Express, Vol. 19, 10206-10220, 2011.
doi:10.1364/OE.19.010206

30. Yi, K. J., H. Wang, Y. F. Lu, and Z. Y. Yang, "Enhanced Raman scattering by self-assembled silica spherical microparticles," J. of Appl. Phys., Vol. 101, 063528, 2007.
doi:10.1063/1.2450671

31. Le Ru, E. C., E. Blackie, M. Meyer, and P. G. Etchegoin, "Surface enhanced Raman scattering enhancement factors: A comprehensive study," J. Phys. Chem. C, Vol. 111, 13794-13803, 2007.
doi:10.1021/jp0687908

32. Banaee, M. G. and K. B. Crozier, "Gold nanorings as substrate for surface-enhanced Raman scattering," Opt. Letters, Vol. 35, 760-762, 2010.
doi:10.1364/OL.35.000760

33. Li, Z., H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, "A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications," J. Phys. D: Appl. Phys., Vol. 45, 305102, 2012.
doi:10.1088/0022-3727/45/30/305102

34. Ashok, P. C., G. P. Singh, K. M. Tan, and K. Dholakia, "Fiber probe based microfluidic raman spectroscopy," Opt. Express, Vol. 18, 7642-7649, 2010.
doi:10.1364/OE.18.007642

35. Ju, D., H. Pei, Y. Jiang, and X. Sun, "Controllable and enhanced nanojet effects excited by surface plasmon polariton," Appl. Phys. Lett., Vol. 102, 171109, 2013.
doi:10.1063/1.4802958

36. Fullwave 6.0 RSOFT Design Group, 1999, .
doi:10.1063/1.4802958

37. Udagedara, I., M. Premaratne, I. D. Rukhlenko, H. T. Hattori, and G. P. Agrawal, "Unified PML for FDTD modelling of dispersive optical materials," Opt. Express, Vol. 17, 21179-21190, 2009.
doi:10.1364/OE.17.021179

38. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer, New York, 2007.

39. Rakic, A. D., A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Optics, Vol. 37, 5271-5283, 1998.
doi:10.1364/AO.37.005271