Vol. 40
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-05-13
Novel Compact UWB Frequency Selective Surface for Angular and Polarization Independent Operation
By
Progress In Electromagnetics Research Letters, Vol. 40, 71-79, 2013
Abstract
This paper deals with a novel miniaturized FSS with wide stop band characteristics for UWB applications. The proposed FSS consists of garland like design printed on either side of the dielectric substrate. The design provides a bandwidth equal to 3.5 GHz at -20 dB reference level of insertion loss which lies within the UWB range. The design delivers stable response for various angular incidences. In addition to this, the symmetrical nature of the FSS holds identical response for both TE and TM Mode of polarization. The proposed geometry is fabricated and its simulated results are validated with measurements. A comprehensive analysis is made by adjusting various parameters associated with the proposed design.
Citation
Sanjay Baisakhiya, Ramprabhu Sivasamy, Malathi Kanagasabai, and Sakthivel Periaswamy, "Novel Compact UWB Frequency Selective Surface for Angular and Polarization Independent Operation," Progress In Electromagnetics Research Letters, Vol. 40, 71-79, 2013.
doi:10.2528/PIERL13022707
References

1. Mittra, R., C. H. Chan, and T. Cwik, "Techniques for analyzing frequency selective surfaces --- A review," Proc. IEEE, Vol. 76, 1593-1615, Dec. 1988.
doi:10.1109/5.16352

2. Li, H., B.-Z. Wang, G. Zheng, W. Shao, and L. Guo, "A reflectarray antenna backed on FSS for low RCS and high radiation performances," Progress In Electromagnetics Research C, Vol. 15, 145-155, 2010.
doi:10.2528/PIERC10070303

3. Munk, B. A., Frequency Selective Surfaces-theory and Design, John Wiley, 2000.
doi:10.1002/0471723770

4. Ranga, Y., L. Matekovits, K. Esselle, and A. R. Weily, "Multi-octave frequency selective surface reflector for ultrawideband antennas," IEEE Antennas Wireless Propag. Lett., Vol. 10, 219-222, 2011.
doi:10.1109/LAWP.2011.2130509

5. Li, W.-L., G.-H. Yang, T. Zhang, and Q. Wu, "A novel frequency selective surface with ultrawide band polarization selective response," 12th IEEE International Conference on Communication Technology (ICCT), 1315-1318, Nov. 11-14, 2010.

6. Li, W., T. Zhang, G. Yang, Q. Wu, and J. Hua, "Novel Frequency selective surface with compact structure and ultrawide band response," Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), 557-560, May 21-24, 2012.

7. Campos, A. L. P. S., Elder E. C. de Oliveira, and P. H. da F. Silva, "Design of miniaturized frequency selective surfaces using Minkowski island fractal," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 9, No. 1, 43-49, Jun. 2010.

8. Kim, D., J. Yeo, and J. Choi, "Broadband spatial band-stop filter using Sierpinski spacefilling geometry at PCS band," Microwave and Optical Technology Letters, Vol. 50, No. 1, 2716-2718, Oct. 2008.

9. Salehi, M. and N. Behdad, "A second-order dual X-/Ka-band frequency selective surface," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 12, 785-787, Dec. 2008.
doi:10.1109/LMWC.2008.2007698

10. Campos, A. L. S., R. H. C. Manicoba, and A. G. d'Assuncao, "Investigation of enhancement band using double screen frequency selective surfaces with koch fractal geometry at millimeter wave range," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 31, 1503-1511, Dec. 2010.
doi:10.1007/s10762-010-9735-8

11. Campos, A. L. S., R. H. C. Manicoba, L. M. Araujo, and A. G. d'Assuncao, "Analysis of simple FSS cascading with dual band response," IEEE Trans. on Magnetics, Vol. 46, No. 8, 3345-3348, Aug. 2010.
doi:10.1109/TMAG.2010.2046023

12. Taylor, P. S., A. C. M. Austin, E. A. Parker, M. J. Neve, J. C. Batchelor, J. T.-Yiin, M. Leung, G. B. Rowe, A. G. Williamson, and K. W. Sowerby, "Angular independent frequency selective surfaces for interference control in indoor wireless environments," Electronics Letters, Vol. 48, No. 2, Jan. 19, 2012.

13. Stefanelli, R. and D. Trinchero, "Reduction of electromagnetic interference by means of frequency selective devices," IEEE 17th International Conference on Telecommunications, 239-243, Apr. 2010.