Vol. 37
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-01-10
Ultra-Wideband Cavity-Backed Bowtie Antenna for Pattern Improvement
By
Progress In Electromagnetics Research Letters, Vol. 37, 37-46, 2013
Abstract
The design and ultra-wideband performance of a cavity-backed bowtie antenna with the parasitic dipole and parasitic circular ring is presented. Besides the elliptical bowtie dipole and the taper feeding microstrip for obtaining ultra-wideband impedance characteristics, the parasitic dipole and parasitic circular ring to effectively improve the radiation pattern can be used for obtaining the stable broadside unidirectional radiation patterns. An ultra-wideband impedance characteristic of about 118.2% for VSWR ≤ 2 ranging from 2.75-10.7 GHz is achieved. A unidirectional radiation pattern, a stable peak gain of around 7.4-10.8 dBi and low cross polarization over the whole operating band are also produced. A prototype has been fabricated and tested, and the experimental results validate the design procedure.
Citation
Zhi-Ya Zhang, Shaoli Zuo, Xiaolu Zhang, and Guang Fu, "Ultra-Wideband Cavity-Backed Bowtie Antenna for Pattern Improvement," Progress In Electromagnetics Research Letters, Vol. 37, 37-46, 2013.
doi:10.2528/PIERL12110909
References

1. Abbosh, A. M. and M. E. Bialkowski, "Design of ultra-wideband planar monopole antennas of circular and elliptical shape," IEEE Trans. Antennas Propag., Vol. 5, 17-23, 2008.
doi:10.1109/TAP.2007.912946

2. Wu, Q., R. Jin, J. Geng, and M. Ding, "Printed omni-directional UWB monopole antenna with very compact size," IEEE Trans. Antennas Propag, Vol. 56, 896-899, 2008.
doi:10.1109/TAP.2008.917018

3. Azarmanesh, M., S. Soltani, and P. Lotfi, "Design of an ultra-wideband monopole antenna with WiMAX, C and wireless local area network," IET Microw. Antennas Propag., Vol. 5, 728-733, 2011.
doi:10.1049/iet-map.2010.0148

4. Abbosh, A. M., H. K. Kan, and M. E. Bialkowski, "Compact ultra-wideband planar tapered slot antenna for use in a microwave imaging system," Microw. Opt. Technol. Lett., Vol. 48, 2212-2216, 2006.
doi:10.1002/mop.21906

5. Reed, J., R. Michael Buehrer, and D. S. Ha, "Introduction to UWB: Impulse radio for radar and wireless communications," MPRG, 4, 2002.

6. Bialkowski, M. E. and A. M. Abbosh, "Design of UWB planar antenna with improved cut-off at the out-of-band frequencies," IEEE Antennas Wirel. Propag. Lett., Vol. 7, 408-410, 2008.
doi:10.1109/LAWP.2008.2000724

7. Abbosh, A. M., "Miniaturized microstrip-fed tapered-slot antenna with ultrawideband performance," IEEE Antennas Wirel. Propag. Lett., Vol. 8, 690-692, 2009.
doi:10.1109/LAWP.2009.2025613

8. Faraji, D. and M. N. Azarmanesh, "A novel modified head-shaped monopole antenna for UWB applications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1291-1301, 2009.
doi:10.1163/156939309789108552

9. Ma, Q., B.-H. Sun, J.-F. Li, and Q.-Z. Liu, "A differential rectangular patch antenna with marchand balun for UWB applications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 49-55, 2009.
doi:10.1163/156939309787604698

10. Lee, S. H., J. N. Lee, J. K. Park, and H. S. Kim, "Design of the compact UWB antenna with PI-shaped matching stub," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 10, 1440-1449, 2008.
doi:10.1163/156939308786348820

11. Moosazadeh, M., C. Ghobadi, and M. Dousti, "Small monopole antenna with checkered-shaped patch for UWB application," IEEE Antennas Wirel. Propag. Lett., Vol. 9, 1014-1017, 2010.
doi:10.1109/LAWP.2010.2088375

12. Siahcheshm, A., S. Sadat, C. Ghobadi, and J. Nourinia, "Design of a microstrip slot antenna filled by an isosceles triangle," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 1, 111-118, 2008.
doi:10.1163/156939308783122715

13. Abbosh, A. M., "Miniaturization of planar ultrawideband antenna via corrugation," IEEE Antennas Wirel. Propag. Lett., Vol. 7, 685-688, 2008.
doi:10.1109/LAWP.2008.2009323

14. Yang, C., Q. Guo, and K. Huang, "Study of a double-fed circular disc monopole antenna for UWB systems," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14-15, 1943-1952, 2010.

15. Lau, K. F. and K. M. Luk, "A wideband monopolar wire-patch antenna for indoor base station applications," IEEE Antennas Wirel. Propag. Lett., Vol. 4, 155-157, 2005.
doi:10.1109/LAWP.2005.847432

16. Row, J.-S., S.-H. Yeh, and K.-L. Wong, "A wide-band monopolar plate-patch antenna," IEEE Trans. Antennas Propag., Vol. 50, 1328-1330, 2002.

17. Khan, S. N., J. Yao, Z. Shuai, and S. He, "Modified square UWB monopole antenna for improved impedance bandwidth," Journal of Electromagnetic Waves and Applications,, Vol. 22, No. 14-15, 1883-1888, 2008.
doi:10.1163/156939308787538008

18. Lau, K.-L. and K.-M. Luk, "Wideband folded L-slot shorted-patch antenna," Electron. Lett., Vol. 41, 1098-1099, 2005.
doi:10.1049/el:20052228

19. Kumar, A. and H. D. Hristov, Microwave Cavity Antennas, Artech House, Norwood, MA, 1989.

20. Li, R., D. Thompson, M. M. Tentzeris, J. Laskar, and J. Papapolymerou, "Development of a wide-band short backfire antenna excited by an unbalance-fed H-shaped slot," IEEE Trans. Antennas Propag., Vol. 53, 662-671, 2005.

21. Wong, J. L. and H. E. King, "A cavity-backed dipole antenna with wide bandwidth characteristics," IEEE Trans. Antennas Propag., Vol. 21, 725-727, 1973.
doi:10.1109/TAP.1973.1140568

22. Qu, S.-W., J.-L. Li, Q. Xue, C. H. Chan, and S. Li, "Wideband and unidirectional cavity-backed folded triangular bowtie antenna," EEE Trans. Antennas Propag., Vol. 55, 1259-1263, 2009.
doi:10.1109/TAP.2009.2015845

23. Qu, S.-W., J.-L. Li, Q. Xue, and C. H. Chan, "Wideband cavity-backed bowtie antenna with pattern improvement," IEEE Trans. Antennas Propag., Vol. 56, 1259-1263, 2008.