Vol. 34
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-08-23
3D Printing of Anisotropic Metamaterials
By
Progress In Electromagnetics Research Letters, Vol. 34, 75-82, 2012
Abstract
Material properties in radio frequency and microwave regimes are limited due to the lack of molecular resonances at these frequencies. Metamaterials are an attractive means to realize a prescribed permittivity or permeability function, but these are often prohibitively lossy due to the use of inefficient metallic resonators. All-dielectric metamaterials offer excellent potential to overcome these losses, but they provide a much weaker interaction with an applied wave. Much design freedom can be realized from all-dielectric structures if their dispersion and anisotropy are cleverly engineered. This, however, leads to structures with very complex geometries that cannot be manufactured by conventional techniques. In this work, artificially anisotropic metamaterials are designed and then manufactured by 3D printing. The effective material properties are measured in the lab and agree well with model predictions.
Citation
Cesar R. Garcia, Jesus Correa, David Espalin, Jay H. Barton, Raymond C. Rumpf, Ryan Wicker, and Virgilio Gonzalez, "3D Printing of Anisotropic Metamaterials," Progress In Electromagnetics Research Letters, Vol. 34, 75-82, 2012.
doi:10.2528/PIERL12070311
References

1. Ramakrishna, S. A. and T. M. Grzegorczyk, Negative Refractive Index Materials, SPIE Press, Washington, 2009.

2. Kosaka, H., et al., "Superprism phenomena in photonic crystals," Physical Review B, Vol. 58, No. 16, R10096-R10099, 1998.
doi:10.1103/PhysRevB.58.R10096

3. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

4. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847

5. Smith, D. R. N. Kroll, "Negative refractive index in left-handed materials," Physical Review Letters, Vol. 85, No. 14, 2933-2936, 2000.
doi:10.1103/PhysRevLett.85.2933

6. Viktor, G. V., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699

7. Enoch, S., et al. A metamaterial for directive emission, Vol. 89, No. 21, 213902, Physical Review Letters, 2002.

8. Genereux, F., et al. "Large birefringence in two-dimensional silicon photonic crystals," Physical Review B, Vol. 63, No. 16, 161101, 2001.
doi:10.1103/PhysRevB.63.161101

9. Grann, E. B., M. Moharam, and D. A. Pommet, "Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary gratings," JOSA A, Vol. 11, No. 10, 2695-2703, 1994.
doi:10.1364/JOSAA.11.002695

10. Halevi, P., A. A. Krokhin, and J. Arriaga, "Photonic crystal optics and homogenization of 2D periodic composites," Physical Review Letters, Vol. 82, No. 4, 719-722, 1999.
doi:10.1103/PhysRevLett.82.719

11. Smith, D. R., et al. "Design and measurement of anisotropic metamaterials that exhibit negative refraction," IEICE Transactions on Electronics E Series C, Vol. 87, No. 3, 359-370, 2004.

12. Rotman, W., "Plasma simulation by artificial dielectrics and parallel-plate media," IRE Transactions on Antennas and Propagation, Vol. 10, No. 1, 82-95, 1962.
doi:10.1109/TAP.1962.1137809

13. Pendry, J., et al. "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

14. Soukoulis, C. M. and M. Wegener, "Optical metamaterials --- Optical metamaterials," Science, Vol. 330, No. 6011, 1633, 2010.
doi:10.1126/science.1198858

15. Hao, J., et al. "Manipulating electromagnetic wave polarizations by anisotropic metamaterials," Physical Review Letters, Vol. 99, No. 6, 63908, 2007.
doi:10.1103/PhysRevLett.99.063908

16. Gaillot, D. P., C. Croenne, and D. Lippens, "An all-dielectric route for terahertz cloaking," Opt. Express, Vol. 16, No. 6, 3986-3992, 2008.
doi:10.1364/OE.16.003986

17. Mehta, A., et al. "Spatially polarizing autocloned elements," Optics Letters, Vol. 32, No. 13, 1935-1937, 2007.
doi:10.1364/OL.32.001935

18. Kukhtarev, N., "Wavefront reversal of optical beams in anisotropic media," Quantum Electronics, Vol. 11, No. 7, 878-883, 1981.
doi:10.1070/QE1981v011n07ABEH007253

19. Leung, K. and Y. Liu, "Photon band structures: The plane-wave method," Physical Review B, Vol. 41, No. 14, 10188, 1990.
doi:10.1103/PhysRevB.41.10188

20. Datta, S., et al. "Effective dielectric constant of periodic composite structures," Physical Review B, Vol. 48, No. 20, 14936-14943, 1993.
doi:10.1103/PhysRevB.48.14936

21. Krokhin, A. A., P. Halevi, and J. Arriaga, "Long-wavelength limit (homogenization) for two-dimensional photonic crystals," Physical Review B, Vol. 65, No. 11, 115208, 2002.
doi:10.1103/PhysRevB.65.115208

22. Gibson, I., D. W. Rosen, and B. Stucker, Additive Manufacturing Technologies, Rapid Prototyping to Direct Digital Manufacturing, Springer, , New York, NY, 2010.

23. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Transactions on Instrumentation and Measurement, Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932