Vol. 33
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-07-25
Design and Optimization of High Sensitivity Photonic Interferometric Biosensors on Polymeric Waveguides
By
Progress In Electromagnetics Research Letters, Vol. 33, 151-166, 2012
Abstract
The design criteria of integrated optical biosensors based on the Mach-Zehnder Interferometer and on the Michelson Interferometer are proposed. Sensitive performance has been evaluated for different optical polymeric waveguiding structures such as channel, inverted-rib and strip waveguides. For all the configurations of the examined optical waveguiding interferometric biosensors maximum linearity and sensitivity have been obtained. In particular, the achieved sensitivity, expressed as the ratio between the normalized output power and the protein concentration, is about equal to 1.6 (g/ml)-1 which, for a maximum variation of the output power equal to 100 mW, leads to a non-normalized sensitivity equal to 160 mW/(g/ml).
Citation
Giovanna Calo, Antonio Farinola, and Vincenzo Petruzzelli, "Design and Optimization of High Sensitivity Photonic Interferometric Biosensors on Polymeric Waveguides," Progress In Electromagnetics Research Letters, Vol. 33, 151-166, 2012.
doi:10.2528/PIERL12051303
References

1. Banerjee, A., "Enhanced refractometric optical sensing by using one-dimensional ternary photonic crystals," Progress In Electromagnetics Research, Vol. 89, 11-22, 2009.
doi:10.2528/PIER08112105

2. Massaro, A., F. Spano, P. Cazzato, R. Cingolani, and A. Athanassiou, "Innovative optical tactile sensor for robotic system by gold nanocomposite material," Progress In Electromagnetics Research M, Vol. 16, 145-158, 2011.

3. Mescia, L., F. Prudenzano, L. Allegretti, G. Calò, M. De Sario, A. D'Orazio, L. Maiorano, T. Palmisano, and V. Petruzzelli, "Design of silica-based photonic crystal fiber for biosensing applications," Journal of Non-Crystalline Solids, Vol. 355, 1163-1166, 2009.
doi:10.1016/j.jnoncrysol.2009.01.047

4. D'Orazio, A., M. De Sario, C. Giasi, L. Mescia, V. Petruzzelli, and F. Prudenzano, "Design of planar optic sensors for hydrocarbon detection," Optical and Quantum Electronics, Vol. 36, No. 6, 507-526, 2004.
doi:10.1023/B:OQEL.0000025786.11522.a4

5. Prudenzano, F., L. Mescia, L. A. Allegretti, G. Calò, A. D'Orazio, M. De Sario, T. Palmisano, and V. Petruzzelli, "Design of an optical sensor array for hydrocarbon monitoring," Optical and Quantum Electronics, 2009, DOI 10.1007/s11082-009-9322-1.

6. Vincenti, M. A., M. De Sario, V. Petruzzelli, A. D'Orazio, F. Prudenzano, D. De Ceglia, and M. Scalora, "Fabry-Perot microcavity sensor for H2-breath-test analysis," J. Applied Physics, Vol. 102, No. 7, 074501, 2007.
doi:10.1063/1.2785023

7. Stomeo, T., V. Marrocco, V. Petruzzelli, F. Prudenzano, M. Grande, A. Qualtieri, A. Passaseo, and M. De Sario, "Fabrication of force sensors based on two-dimensional photonic crystal technology," Microelectronic Engineering, Vol. 84, No. 5--8, 1450-1453, 2007.
doi:10.1016/j.mee.2007.01.227

8. Dostalek, J., J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Actuators B, Vol. 76, 8-12, 2001.
doi:10.1016/S0925-4005(01)00559-7

9. Hopman, W. C. L., P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, "Quasi one-dimensional photonic crystal as a compact building-block for refractometric optical sensors," IEEE J. Sel. Top. in Quantum Electron., Vol. 11, 11-16, 2005.
doi:10.1109/JSTQE.2004.841693

10. Luo, Z., T. Suyama, X. Xu, and Y. Okuno, "A grating-based plasmon biosensor with high resolution," Progress In Electromagnetics Research, Vol. 118, 527-539, 2011.
doi:10.2528/PIER11060103

11. Singh, V. and D. Kumar, "Theoretical modeling of a metal-clad planar waveguide based biosensors for the detection of pseudomonas-like bacteria," Progress In Electromagnetics Research M, Vol. 6, 167-184, 2009.
doi:10.2528/PIERM09021701

12. Prieto, F., B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, and L. M. Lechug, "Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications," Sens. Actuators B, Vol. 92, 151-158, 2003.
doi:10.1016/S0925-4005(03)00257-0

13. Koerdt, M. and F. Vollertsen, "Fabrication of an integrated optical Mach{Zehnder interferometer based on refractive index modification of polymethylmethacrylate by krypton fluoride excimer laser radiation," Applied Surface Science, Vol. 257, 5237-5240, 2011.
doi:10.1016/j.apsusc.2010.11.039

14. Lillie, J. J., M. A. Thomas, N.-M. Jokerst, S. E. Ralph, K. A. Dennis, and C. L. Henderson, "Multimode interferometric sensors on silicon optimized for fully integrated complementary metal-oxide-semiconductor chemical-biological sensor systems," J. Opt. Soc. Am. B, Vol. 23, 642-651, 2006.
doi:10.1364/JOSAB.23.000642

15. Bruck, R., E. Melnik, P. Muellner, R. Hainberger, and M. Lammerhofer, "Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding," Biosensors and Bioelectronics, Vol. 26, 3832-3837, 2011.
doi:10.1016/j.bios.2011.02.042

16. Xu, Y., Y. Q. Li, Y. Jiang, and C. K. Y. Leung, "Application of 3×3 coupler based Mach-Zehnder interferometer in delamination patch detection in composite," NDT&E International, Vol. 44, 469-476, 2011.
doi:10.1016/j.ndteint.2011.04.009

17. Melnik, E., R. Bruck, R. Hainberger, and M. Lämmerhofer, "Multi-step surface functionalization of polyimide based evanescent wave photonic biosensors and application for DNA hybridization by Mach-Zehnder interferometer," Analytica Chimica Acta, Vol. 699, 206-215, 2011.
doi:10.1016/j.aca.2011.05.017

18. Duan, D.-W., Y.-J. Rao, L.-C. Xu, T. Zhu, D. Wu, and J. Yao, "In-fiber Mach-Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity," Sens. and Actuators B, Vol. 160, 1198-1202, 2011.
doi:10.1016/j.snb.2011.09.048

19. Hong, J., J. S. Choi, G. Han, J. K. Kang, C.-M. Kim, T. S. Kim, and D. S. Yoon, "A Mach-Zehnder interferometer based on silicon oxides for biosensor applications," Analytica Chimica Acta, Vol. 573--574, 97-103, 2006.
doi:10.1016/j.aca.2006.04.045

20. Qi, Z.-M., N. Matsuda, K. Itoh, M. Murabayashi, and C. R. Lavers, "A design for improving the sensitivity of a Mach-Zehnder interferometer to chemical and biological measurands," Sens. and Actuators B, Vol. 8, 254-258, 2002.
doi:10.1016/S0925-4005(01)00960-1

21. Mosquera, L., J. H. Osório, J. G. Hayashi, and C. M. B. Cordeiro, "Refractometric sensor based on all-fiber coaxial Michelson and Mach-Zehnder interferometers for ethanol detection in fuel," Journal of Physics: Conference Series, Vol. 274, 012020, 2011.
doi:10.1088/1742-6596/274/1/012020

22. Meng, H. Y., W. Shen, G. B. Zhang, X. W. Wu, W. Wang, C. Tan, and X. G. Huang, "Michelson interferometer-based fiber-optic sensing of liquid refractive index," Sens. and Actuators B, Vol. 160, 720-723, 2011.
doi:10.1016/j.snb.2011.08.054

23. Llobera, A., V. J. Cadarso, M. Darder, C. Domìnguez, and C. Fernàndez-Sànchez, "Full-field photonic biosensors based on tunable bio-doped sol-gel glasses," Lab Chip, Vol. 8, 1185-1190, 2008.
doi:10.1039/b801152d

24. Stangegaard, M., Z. Wang, J. P. Kutter, M. Dufva, A. Wolff, and , "Whole genome expression profiling using DNA microarray for determining biocompatibility of polymeric surfaces," Mol. BioSyst, Vol. 2, 421-428, 2006.
doi:10.1039/b608239d

25. Koerdt, M. and F. Vollertsen, "Fabrication of an integrated optical Mach{Zehnder interferometer based on refractive index modification of polymethylmethacrylate by krypton fluoride excimer laser radiation," Applied Surface Science, Vol. 257, 5237-5240, 2011.
doi:10.1016/j.apsusc.2010.11.039

26. Esinenco, D., S. D. Psoma, M. Kusko, A. Schneider, and R. Muller, "SU-8 Micro-Biosensor based on Mach-Zehnder Interferometer," Rev. Adv. Mater. Sci, Vol. 10, 295-299, 2005.

27. Lu, B. J., et al. "Integrated optical Mach-Zehnder biosensor," J. Light. Tech., Vol. 16, No. 4, 583-592, 1998.
doi:10.1109/50.664067

28. De Sario, M., A. D'Orazio, and V. Lanave, "Realistic design of a WDM duplexer made from LiNbO3 optical filters," J. Phys. D, Vol. 21, s147-s149, 1988.
doi:10.1088/0022-3727/21/10S/042

29. Buus, J., "The effective index method and its application to semiconductor laser," IEEE J. Quant. Elect., Vol. 18, 1083-1089, 1982.
doi:10.1109/JQE.1982.1071659

30. Liu, J.-M., Photonic Devices, Cambridge University Press, 2005.
doi:10.1017/CBO9780511614255

31. D'Alessandro, A., F. Campoli, P. Maltese, G. Chessa, A. D'Orazio, and V. Petruzzelli, "Design of an ultrashort directional coupler with an SSFLC coupling layer," Molecular Crystals and Liquid Crystals, Vol. 320, 355-364, 1998.

32. DeFeijter, J. A., J. Benjamins, and F. A. Veer, "Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface," Biopolymers, Vol. 17, 1759-1772, 1978.
doi:10.1002/bip.1978.360170711