Vol. 28
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-12-12
Novel Bandpass Filter Based on CSRR Using Koch Fractal Curve
By
Progress In Electromagnetics Research Letters, Vol. 28, 121-128, 2012
Abstract
In this paper, on the basis of proposing a novel complementary split-ring resonator (CSRR) using Koch fractal curve, a bandpass filter based on such a new structure is designed To validate the designing method. Transmission characteristics and reflection characteristics of the presented filter are given by both software simulation and experiment measurement. Consistent results have confirmed the design concept and excellent performance of the new structure and indicated that the proposed filter has a low insertion loss a high selectivity and small size.
Citation
Tianpeng Li, Guang-Ming Wang, Ke Lu, He-Xiu Xu, Zhi-Heng Liao, and Binfeng Zong, "Novel Bandpass Filter Based on CSRR Using Koch Fractal Curve," Progress In Electromagnetics Research Letters, Vol. 28, 121-128, 2012.
doi:10.2528/PIERL11082903
References

1. Wang, S.-N. and N.-W. Chen, "Compact, ultra-broadband coplanar-waveguide bandpass filter with excellent stopband rejection," Progress In Electromagnetics Research B, Vol. 17, 15-28, 2009.
doi:10.2528/PIERB09071008

2. Chen, H. and Y.-X. Zhang, "A novel and compact UWB bandpass filter using microstrip fork-form resonators," Progress In Electromagnetics Research, Vol. 77, 273-280, 2007.
doi:10.2528/PIER07082302

3. Mandal, M. K. and S. Sanyal, "Compact wideband bandpass filter," IEEE Microwave Wireless Compon. Lett., Vol. 16, 46-49, 2006.
doi:10.1109/LMWC.2005.860012

4. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1969.
doi:10.1070/PU1968v010n04ABEH003699

5. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

6. Chen, W.-L., "Investigations into the applications of fractal geometry in microwave engineering,", A Dissertation Submitted to Air Force Engineering University in Candidacy for Degree of Doctor of Philosophy, Xi'an, Dec. 2008.
doi:10.1103/PhysRevLett.84.5528

7. Baena, J. D., R. Marques, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B, Vol. 69, 014402(1)-(5), 2004.

8. Dai , G. and M. Xia, "Novel miniaturized bandpass filters using spiral-shaped resonators and window feed structures," Progress In Electromagnetics Research, Vol. 100, 235-243, 2010.
doi:10.2528/PIER09120401

9. Chen , H., L. Ran, J. Huangfu, X. Zhang, and K. Chen, "Lefthanded materials composed of only S-shaped resonators," Phys. Rev. E, Vol. 70, 057605(1)-(4), 2004.

10. Wang, D., L. Ran, H. Chen, M. Mu, J. A. Kong, and B.-I. Wu, "Experimental validation of negative refraction of metamaterial composed of single side paired S-ring resonators," Appl. Phys. Lett., Vol. 90, 254103(1)-(3), 2007.

11. Falcone, F., T. Lopetegi, J. D. Baena, et al. "Effective negative-ε stopband microstrip lines based on complementary split ring resonators," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 6, 280-282, 2004.
doi:10.1109/LMWC.2004.828029

12. Liu, J.-C., H.-C. Lin, and B.-H. Zeng, "Complementary split ring resonators with dual mesh-shaped couplings and defected ground structures for wide pass-band and stop-band BPF design," Progress In Electromagnetics Research Letters, Vol. 10, 19-28, 2009.

13. Selga, J., F. Aznar, A. Velez, M. G. J. Bonache, and F. Martin, "Low-pass and high-pass microwave filters with transmission zero based on metamaterial concepts," IEEE International Workshop on Antenna Technology, 1-4, 2009.
doi:10.1109/IWAT.2009.4906914

14. Kim, J.-H., I.-K. Kim, J.-G. Yook, and H.-K. Park, "A slow-wave structure with Koch fractal slot loops," Microwave and Optical Technology Letters, Vol. 34, No. 2, 87-88, 2002.
doi:10.1002/mop.10381

15. Crnojevic'-Bengin, V. and V. R. B. Jokanovic, "Fractal geometries of complementary split-ring resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 10, 2312-2321, 2008.
doi:10.1109/TMTT.2008.2003522

16. Lim, J., J. Lee, J. Lee, S.-M. Han, D. Ahn, and Y. Jeong, "A new calculation method for the characteristic impedance of transmission lines with modified ground structures or perturbation," Progress In Electromagnetics Research, Vol. 106, 147-166, 2010.
doi:10.2528/PIER10052602

17. Wu, G.-L., W. Mu, X.-W. Dai, and Y.-C. Jiao, "Design of novel dual-band bandpass filter with microstrip meander-loop resonator and CSRR DGS," Progress In Electromagnetics Research, Vol. 78, 17-24, 2008.
doi:10.2528/PIER07090301

18. Zhang, J., J.-Z. Gu, B. Cui, and X. W. Sun, "Compact and harmonic suppression open-loop resonator bandpass filter with tri-section SIR," Progress In Electromagnetics Research, Vol. 69, 93-100, 2007.
doi:10.2528/PIER06120702

19. Velazquez-Ahumada, M. D. C., J. Martel-Villagr, F. Medina, and F. Mesa, "Design of band-pass filters using stepped impedance resonators with floating conductors," Progress In Electromagnetics Research, Vol. 105, 31-48, 2010.
doi:10.2528/PIER10042010