Vol. 26
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-09-06
Design of an Ultra-Wideband Antenna Using Boolean Differential Evolution Algorithm
By
Progress In Electromagnetics Research Letters, Vol. 26, 135-141, 2011
Abstract
A compact ultra-wideband (UWB) slot antenna based on a mesh-grid structure is designed. A Boolean differential evolution (BDE) algorithm is used to optimize the mesh-grid structure as well as other parameters of the proposed antenna for good impedance matching in the UWB band. The optimized UWB antenna has a compact size of 24.2 × 32.2 mm and is fabricated and measured. According to the measured results, the proposed antenna yields a wide bandwidth, defined by S11 < -10 dB ranging from 2.8 to 11.2 GHz. And it shows that the BDE algorithm is an effective method for antenna design.
Citation
Lei Xie, and Yong-Chang Jiao, "Design of an Ultra-Wideband Antenna Using Boolean Differential Evolution Algorithm," Progress In Electromagnetics Research Letters, Vol. 26, 135-141, 2011.
doi:10.2528/PIERL11080804
References

1. Zhu, X.-F. D. Su, "A study of a compact microstrip-FED UWB antenna with an open T-slot," Progress In Electromagnetics Research Letters, Vol. 13, 181-189, 2010.
doi:10.2528/PIERL10030106

2. Sadat, S., M. Houshmand, and M. Roshandel, "Design of a microstrip square-ring slot antenna filled by an H-shape slot for UWB applications," Progress In Electromagnetics Research, Vol. 70, 191-198, 2007.
doi:10.2528/PIER07012002

3. Fallahi , R., A. A. Kalteh, and M. G. Roozbahani, "A novel UWB elliptical slot antenna with band-notched characteristics," Progress In Electromagnetics Research, Vol. 82, 127-136, 2008.
doi:10.2528/PIER08022603

4. Shiu, J.-Y., J.-Y. Sze, and P.-J. Tu, "Compact ultrawideband square slot antenna with an asymmetric protruding stub," Microwave and Optical Technology Letters, Vol. 50, No. 7, 1776-1779, 2008.
doi:10.1002/mop.23544

5. Fan, S.-T., Y.-Z. Yin, L. Kang, S.-J. Wei, Y.-Z. Wang, and K. Song, "Bandwidth enhancement of a coplanar waveguide-fed asymmetrical slot antenna with a rectangular patch," Microwave and Optical Technology Letters, Vol. 52, No. 10, 2259-2261, 2010.
doi:10.1002/mop.25476

6. Choo, H. and H. Ling, "Design of broadband and dual-band microstrip antennas on a high-dielectric substrate using a genetic algorithm," IEE Proceedings Microwaves Antennas and Propagation, Vol. 150, No. 3, 137-142, 2003.
doi:10.1049/ip-map:20030291

7. Kerkhoff, A. J., R. L. Rogers, and H. Ling, "Design and analysis of planar monopole antennas using a genetic algorithm approach," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 10, 2709-2718, 2004.
doi:10.1109/TAP.2004.834429

8. Ohira, M., M., H. Deguchi, M. Tsuji, and H. Shigesawa, "Multiband single-layer frequency selective surface designed by combination of genetic algorithm and geometry-refinement technique," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 11, 2925-2931, 2004.
doi:10.1109/TAP.2004.835289

9. Zhang, L., Y. C. Jiao, Z. B. Weng, and F. S. Zhang, "Design of planar thinned arrays using a boolean differential evolution algorithm," IET Microw. Antennas Propag., Vol. 4, No. 12, 2172-2178, 2010.
doi:10.1049/iet-map.2009.0630

10. Johnson , J. M. and V. Rahmat-Samii, "Genetic algorithms in engineering electromagnetics," IEEE Antennas and Propagation Magazine, Vol. 39, No. 4, 7-21, 1997.
doi:10.1109/74.632992

11. Liu, X. F., Y. B. Chen, Y. C. Jiao, and F. S. Zhang, "Modified particle swarm optimization for patch antenna design based on IE3D," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1819-1828, 2007.