Vol. 17
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-09-23
Miniature Electromagnetic Band-Gap Structure Using Spiral Ground Plane
By
Progress In Electromagnetics Research Letters, Vol. 17, 163-170, 2010
Abstract
An important application of electromagnetic band-gap (EBG) structures is reducing the mutual coupling and eliminating the scan blindness for array antennas. However, some array antennas have small element spacing,and traditional mushroom-like EBG materials are too large. Under this condition, miniature EBG structures are desired for these array antennas. In this paper, a novel method using spiral ground plane is proposed to reduce EBG structure sizes. A low frequency band-gap can be obtained by adjusting the width and length of the spiral arms. An experimental prototype is fabricated to validate the analysis. The measurement results show a good agreement with the simulation data. Compared with traditional mushroom-like EBG structures, the proposed EBG achieves more than 77% size diminution.
Citation
Huan-Huan Xie, Yong-Chang Jiao, Kun Song, and Bin Yang, "Miniature Electromagnetic Band-Gap Structure Using Spiral Ground Plane," Progress In Electromagnetics Research Letters, Vol. 17, 163-170, 2010.
doi:10.2528/PIERL10081203
References

1. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas and Propagat., Vol. 51, No. 10, 2936-2946, Oct. 2003.
doi:10.1109/TAP.2003.817983

2. Fu, Y. Q., Q. R. Zheng, Q. Gao, and G. H. Zhang, "Mutual coupling reduction between large antenna arrays using electromagnetic bandgap (EBG) structures," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 819-825, 2006.
doi:10.1163/156939306776143415

3. Fu, Y. and N. Yuan, "Elimination of scan blindness in phased array of microstrip patches using electromagnetic bandgap materials," IEEE Antennas and Wireless Propagat. Lett., Vol. 3, 63-65, 2004.

4. Apostolopoulos, G., A. Feresidis, and J. C. Vardaxoglou, "Miniaturised EBG structures based on complementary geometries," IEEE APS Int Symp. Dig., 2253-2256, Jul. 2006.

5. Zheng, Q. R., Y. Q. Fu, and N. C. Yuan, "A novel compact spiral electromagnetic band-gap (EBG) structure," IEEE Trans. Antennas and Propagat., Vol. 56, No. 6, 1656-1660, Jun. 2008.
doi:10.1109/TAP.2008.923305

6. Kim, Y., F. Yang, and A. Z. Elsherbeni, "Compact artificial magnetic conductor designs using planar square spiral geometries," Progress In Electromagnetics Research, Vol. 77, 43-54, 2007.
doi:10.2528/PIER07072302

7. Lin, B. Q., Q. R. Zheng, and N. C. Yuan, "A novel spiral high impedance surface structure for size reduction," Microwave and Optical Technology Lett., Vol. 49, No. 9, 2186-2189, Sep. 2007.
doi:10.1002/mop.22691

8. McVay, J., N. Engheta, and A. Hoorfar, "High impedance metamaterial surfaces using Hilbert-curve inclusions," IEEE Microw. Wireless Components Lett., Vol. 14, No. 3, 130-132, Mar. 2004.
doi:10.1109/LMWC.2003.822571

9. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, 2009.

10. Yang, F., J. Chen, Q. Rui, and A. Elsherbeni, "A simple and efficient FDTD/PBC algorithm for scattering analysis of periodic structures," Radio Science., Vol. 42, No. 4, RS4004, Jul. 2007.
doi:10.1029/2006RS003526

11. Sievenpiper, D., High-impedance electromagnetic band-gap surface, Ph.D. Dissertation, University of California, Los Angeles, 1999.